状态依赖时滞系统的分岔分析及应用

来源 :郑州大学 | 被引量 : 0次 | 上传用户:zzqq1984
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,状态依赖时滞微分方程在电动力学、人口增长、经济学、工程技术、神经网络、网络拥塞控制等诸多领域得到应用.然而,与常数时滞微分方程不同,由于状态依赖时滞微分方程(SD-DDEs)的解空间具有较弱的光滑性,使得对其进行的理论研究面临了巨大挑战.这也使得对状态依赖时滞微分方程(SD-DDEs)的基础理论研究变得更加复杂.目前,关于状态依赖时滞微分方程的动力学和分岔的解析研究方法十分缺乏.因此,有必要探索一些新的有效的方法来研究状态依赖时滞微分方程系统中的复杂动力学现象.本论文主要专注于探索一些有效的数学方法对状态依赖时滞微分方程的复杂动力学进行研究.我们主要致力于尝试将多尺度方法(MMS)和谐波平衡-时频交替法(HB-AFT)推广至状态依赖时滞微分方程,并研究系统的复杂动力学和周期解的解析近似表达式.这是一项十分有益的工作并且对实际应用具有重要的指导意义.本文的主要工作如下所示:(1)详细综述了自2006年以来状态依赖时滞微分方程的发展和应用.首先,我们总结了近年来发展的对状态依赖时滞微分方程的基本理论,如初值问题的理论框架、线性化与稳定性、解的不变流形、周期解和Hopf分岔理论等.然后,介绍了状态依赖时滞微分方程在数学建模、稳定性、分岔等领域的应用.最后,我们对状态依赖时滞微分方程的研究进行展望.(2)将多尺度方法(MMS)推广至状态依赖时滞微分方程的研究中.基于形式线性化方法、稳定性理论、多尺度方法(MMS)和规范形方法,详细研究了状态依赖时滞微分方程的一个简单线性范例的Hopf分岔和双Hopf分岔.数值结果和解析结果对比验证表明了多尺度方法(MMS)是有效并且精确的.(3)将多尺度方法(MMS)应用于探究基因表达过程中的复杂振荡机理.为了解释基因表达过程中的振荡现象,基于多尺度方法(MMS)和规范形方法探究了具有状态依赖时滞的基因表达模型的Hopf分岔和双Hopf分岔.此外,本文探究了周期解、概周期解、周期2解等丰富且复杂的振荡现象.这将对理解基因表达过程中的复杂振荡机理具有重要意义.(4)将谐波平衡-时频交替法(HB-AFT)推广至具有状态依赖时滞和非光滑函数的微分方程的周期解的研究.首次利用HB-AFT方法详细考虑了网络拥塞控制系统源动力学和队列动力学的周期解.此外,利用数值分岔分析方法展示了系统的复杂动力学现象,如双稳态周期解、周期m解、混沌、多稳态等.这表明网络拥塞控制系统中存在十分复杂并且复杂的动力学现象.因此,基于上述分析结果,可以利用控制方法和参数调整避免网络拥塞并优化网络的性能.这将对网络拥塞控制的实际应用提供重要的指导意义.本文的主要创新点如下所示:(1)将多尺度方法(MMS)成功地推广至状态依赖时滞微分方程的研究中.(2)将谐波平衡-时频交替法(HB-AFT)推广至具有状态依赖时滞和非光滑函数的微分方程中并获得其周期解的解析近似表达式.(3)详细探究了状态依赖时滞微分方程地复杂动力学,例如周期m解、环面、锁相解、混沌以及多稳态解等.
其他文献
小电导钙激活钾通道(small conductance Ca2+activated K+channels,KCa2,SK)属于非电压依赖性的钙激活钾通道家族,主要分布于神经系统和心血管系统,对Ca2+的敏感性远高于大电导钙激活钾通道(big conductance Ca2+activated K+channels,BK),可至亚微摩尔级。Ca2+通过与SK通道羧基端钙调蛋白(calmodulin,
当下的我们,正前所未有的支配着种类繁多的能源,但没有哪一种能源是完美的,我们一直在不断的思考如何维持能源发展与环境之间的平衡,努力创造新的技术用于克服能源的缺陷。在能源驾驭领域,科研工作者探索的脚步从未停止,一方面是对新型清洁能源的研发,另一方面是致力于提高能源利用率。为了维持社会发展和环境之间的平衡需要我们对于能源投入更多的思考,目前关于如何提高能源利用率已经成为能源方面的核心问题之一。随着热电
由四种及以上主要元素组成的固溶体高熵合金具有简单的组织、较高的硬度和强度、优异的高温和低温力学性能、良好的耐磨耐腐蚀性能以及良好的电磁性能等特点而被誉为近代金属材料的三大突破之一,也是当代金属材料的研究热点之一。因此,高熵合金在新型结构材料和功能材料方面潜力巨大。然而,高熵合金作为一种新型金属材料在设计准则、合金元素的协同作用、性能强化机制以及物理、化学性能方面的研究仍显不足。由Co、Cr、Cu、
旋毛虫(Trichinella spiralis)是重要的食源性寄生线虫,其成虫寄生于宿主小肠黏膜内。幼虫能否侵入宿主肠黏膜,是旋毛虫感染宿主与致病的关键;然而,幼虫侵入肠黏膜的机制仍不清楚。形态学研究发现,侵入期幼虫的口孔并无齿(矛)状结构,因而,幼虫侵入肠黏膜并非单纯机械力作用,极可能是幼虫的蛋白酶介导了侵入过程。烯醇酶(enolase)是糖酵解过程的关键酶,也是一个多功能蛋白,在纤溶系统激活
本文主要研究下列三种类型具阻尼的Kirchhoff型方程的适定性,正则吸引子的存在性及其稳定性.具体内容如下:1.对于具有强阻尼的Kirchhoff型波动方程(?)其中(?)∈[0,1],我们证明了当非线性项h(s)和g(s)的增长阶指标和都达到临界,即1≤q,p≤(N+2)/((N-2)+)时,解在相空间 χ=H01×L2中的整体适定性;当t>0时,解具有更高的部分正则性,即类抛物性质;利用解在
多场材料指的是具有多场耦合特征的材料,由于能够实现非机械能(热能、电能、磁能、化学能等)与机械能之间的相互转换,吸引了国内外科学及工程领域广泛关注。本学位论文选取几类典型多场材料(热压电材料、热压电半导体、热电磁材料和准晶)为研究对象,在线性理论框架下,考虑到热效应,围绕三维介质内平片裂纹问题,在解析理论和数值方法方面,开展如下工作:1)以热压电材料和热电磁复合材料为对象,研究温度场与电、磁、力场
强子的性质由QCD理论的低能非微扰性质决定,研究强子的性质,如强子质量谱,强子的产生以及强子的衰变等,对于全面理解QCD的低能非微扰性质具有重要科学意义。由于QCD理论在低能区的非微扰特性,人们只能通过非微扰途径和发展具有QCD精神的唯象模型来研究处于低能区的强子态。夸克模型在解释强子激发态(共振态)的排序和性质方面取得了巨大的成功,但是也面临诸如“质量倒置”、“丢失的共振态”和奇特强子态等难题。
强子是由夸克和胶子组成的复合粒子,也是目前人类能够从实验室分割出来的具有内部结构的最小单元,强子的性质由量子色动力学(quantum chromodynamics,简称QCD)的非微扰行为所决定,研究强子的性质对于深入了解QCD的非微扰行为具有重要的科学意义。近年来,实验上积累了大量有关强子共振态的信息,如何通过解释实验数据来深入了解强子共振态的性质是强子物理的重要研究方向之一。本论文将通过分析有
最小化工件的加权完工时间和是排序论中的重要优化指标.本学位论文在几类典型的机器加工环境下研究了若干与最小化工件的加权完工时间和相关的排序问题.第一章主要介绍了一些与组合最优化以及排序理论相关的基本概念和术语,并对与本文研究内容相关的问题及研究现状进行了综述.第二章研究了在两台流水作业机器环境下最小化加权完工时间和的排序问题,其中在第二台机器上工件的加工时间相同.我们证明了该问题是强NP-困难的,并
热电材料能够直接实现电能和热能之间的相互转换,应用于温差发电和固态制冷,可以有效提高能源利用效率,为缓解能源短缺和环境污染问题提供了新途径。Cu2Se基热电材料具有独特的晶体结构和优异的热电特性,以及低成本、低毒性的商业价值,近十年来发展成为最具潜力的热电材料体系之一。真空熔融-退火、机械合金/溶液合成+热压烧结/放电等离子烧结(SPS)等制备方法已被广泛应用于Cu2Se材料的制备,但有些方法步骤