【摘 要】
:
在实际应用中,通过膜来运输和分离多相混合物中的气体具有重要的意义,如气体参与的化学反应、燃料电池、多相的微反应器等。智能门控膜是膜科学技术中最重要、最有发展前景的领域之一。其中,液体门控膜已经实现了在微米尺度膜上用简单方式对气体的传输控制,这在有气体存在的多相传输中具有重大突破,但是在同一张膜上的两个方向上实现不同的气体流动能力仍是难题。尽管具有单向传输性质的Janus膜可以实现对气泡流动方向的控
论文部分内容阅读
在实际应用中,通过膜来运输和分离多相混合物中的气体具有重要的意义,如气体参与的化学反应、燃料电池、多相的微反应器等。智能门控膜是膜科学技术中最重要、最有发展前景的领域之一。其中,液体门控膜已经实现了在微米尺度膜上用简单方式对气体的传输控制,这在有气体存在的多相传输中具有重大突破,但是在同一张膜上的两个方向上实现不同的气体流动能力仍是难题。尽管具有单向传输性质的Janus膜可以实现对气泡流动方向的控制,但是现有的工作必须在水环境中进行,运输量也很少,对气体的控制能力有限。本论文研究了一种利用独特的可逆非对称变形机制控制气体在不同方向流动能力的液体门控非对称变形膜。膜的不对称变形将引起膜对输运气体的临界压强的变化,从而获得对气体流动能力的控制。基于这一机理,液体门控非对称变形膜可以通过不同方式地简单折叠,设计出对输运气体有可调临界压强的定向气阀。此外,液体门控非对称变形膜可以实现气-液的单向分离并且具有良好的抗污染性能,这为进一步的多相分离应用奠定了基础。本论文的主要内容如下:(1)通过简单的连续静电纺丝法制备出由聚偏氟乙烯(PVDF)层和聚偏氟乙烯/聚丙烯腈(PAN)层组成的非对称变形膜,再经过复合功能液体实现了液体门控非对称变形膜的制备,通过理论和实验证明了这种膜的稳定性。(2)在相同的压力作用下,弹性模量较小的PVDF/PAN层变形明显,而弹性模量较大的PVDF层几乎保持不变。PVDF/PAN层的压缩形变,降低了平均孔径,从而增大了气体从先接触液体门控非对称变形膜的PVDF/PAN层这个方向通过的压力,使液体门控非对称变形膜在两个方向上对输运气体有不同的临界压强。此外,通过对膜进行不同方式的折叠,气体的临界压强会不同,这对设计有不同阈值的气体定向气阀有重要意义。(3)在自主设计的分离装置中,利用具有良好抗污染性能的液体门控非对称变形膜,实现了恒压下的气-液的单向分离。为多相流控制的应用提供了一个新的平台。
其他文献
白簕(Acanthopanax trifoliatus(L.)Merr.)为五加科五加属代表植物,又名刺三甲、簕菜等。白簕为民间常用药用植物,其根具有祛风除湿、舒经络、活血脉的功效,白簕的叶子用来治疗痈肿疮毒、支气管炎、肩周炎等症。但白簕基础研究和开发远不及同是五加科中药的人参,研究空间广阔。本课题以白簕为研究对象,利用现代美白理论,探究白簕美白活性成分的提取工艺、精制方法和酶学美白机制,考察其安
目的:比较不同阶段HBV相关慢性肝病患者炎症活动程度与血清细胞角蛋白18(CK18)M30、M65水平变化及其在临床应用中的意义,探讨其检测水平是否能作为判断肝脏炎症以及肝硬化的敏感血清学指标,从而为临床提高HBV相关性慢性肝病的诊断和治疗提供可靠的依据,对乙肝相关肝病的诊疗发展提供新思路。方法:收集2017年12月至2019年3月在广西医科大学第一附属医院感染性疾病科首次就诊并入院及门诊检查的1
自人类开启信息时代以来,原有的微波技术便越来越无法满足社会需求,此时恰逢光子学技术日新月异,一门同时具有光学技术与微波技术共同优势的科目——微波光子技术应运而生。作为一项前沿的技术,微波光子技术采用光学的方法产生、处理电学信号,其具有防电磁干扰、带宽大、损耗小等一系列特点,被广泛用于当代光通信、生物传感、自动驾驶等热门领域。本文首先对基于Sagnac、二阶Lyot-Sagnac以及二阶Solc-s
背景:慈济化癌保生Ⅱ方(Ciji-Hua’ai-Baosheng Ⅱ Formula,CHB)是由慈济化癌保生方精简而来,该方经过多年临床研究,证明其能有效缓解肿瘤患者化疗后胃肠道不适症状,提高患者食欲,增强免疫力,从而提高癌症病患的生存质量。人体肠道微生态的动态平衡调节着整个胃肠道的健康状态,此方在缓解患者胃肠道不适的同时可能也对其胃肠道微生态产生了一定的影响,但该方在肿瘤患者化疗后胃肠道微生态
Bufalin,中文名字是蟾蜍灵,它是一种Na+,K+-ATPase抑制剂,通过抑制钠钾交换增加细胞内钠离子含量;可调节钠钙泵使细胞内钙离子增加,进而有强心和收缩血管效果;此外,研究发现它也具有抗炎、抗肿瘤作用,可以作为SRC家族分子的有效抑制剂。以往很多研究已经表明动脉粥样硬化疾病实际上是一种慢性炎症疾病,它是由多种危险因素和多种细胞参与引起的;蟾蜍灵的抗炎作用研究较少,而且它在动脉粥样硬化中的
目的:构建中职护理专业《健康教育学》线上线下混合式课程,探讨其应用成效,为护理教育实践与改革提供依据。方法:1.采用文献研究、问卷调查法进行教学分析(学习者特征、课程任务与目标、混合式学习环境)。基于教学分析结果设计教学策略(混合式学习组织、传递、管理策略)及教学评价(形成性、终结性评价),形成初步教学活动方案。采用德尔菲法专家咨询完善教学活动方案。2.基于教学活动方案开发课程资源(配套教学、教辅
当前我国海上风电行业方兴未艾,逐步由近海向资源更丰富的深远海发展,基础形式也由浅海的单桩基础向导管架基础过渡。然而我国东南沿海台风频发,严重威胁着海上风机的结构安全,海上风机的抗台风灾害能力已经成为制约我国海上风电事业发展的瓶颈。目前,海上风电的设计主要基于陆上风电以及海洋油气平台的开发经验。然而不同于传统的海洋油气平台,海上风机作为利用风能的捕风机构,其在台风等恶劣气象环境下面临着更为复杂的荷载
摩擦纳米发电机作为一项新兴的能量收集技术,由于其制备简单、质量轻、成本低、在低频下的超高输出等优点受到了全世界的广泛关注。近年来,针对自然界最广泛的机械能——风能的收集,风力驱动摩擦纳米发电机提供了一种全新的方案。但该技术的性能还需要进一步提升。另一方面,目前可穿戴电子设备主要由电池或者超级电容器等储能设备进行供能,而电池的有限使用寿命限制了这一领域的快速发展。此外,随着人们对健康关注度的不断提高
仙鹤草(Agrimonia pilosa Ledeb.)为蔷薇科多年生草本植物龙芽草的干燥地上部分,具有收敛止血,截疟,止痢,解毒的功效,在民间亦被视为降血糖的良药。仙鹤草在治疗糖尿病以及降低患者血糖方面有着广泛的临床应用。文献报道仙鹤草中三萜类成分具有一定的降血糖活性,然而仙鹤草发挥降血糖作用的物质基础与作用机制尚不明确,有待进一步深入研究。因此,本文以仙鹤草为研究对象,以期发现具有降血糖活性的
随着全球能源的转型,新能源材料逐渐成为研究的热点,在这之中对于能源节约的要求愈发强烈,以绿色无污染且发电效率高著称的固体氧化物燃料电池成为一种极具发展潜力的新能源利用方式。在固体电解质的研究发展中,逐步达到中低温化(873-973K)是一个研究趋势,在较低的工作温度下具有较好的电性能是科研工作者研究的重点。因此开发一种可应用于中低温环境的电解质材料是有必要的,这对中低温燃料电池的研究具有推进作用。