【摘 要】
:
基于双氟磺酰亚胺([FSI]-)和双三氟甲磺酰亚胺([TFSI]-)阴离子的离子液体在电化学中具有潜在的应用。然而,关于它们的微观性质依然不清楚。本论文将多种光谱学手段与量子化学计算方法相结合,对[FSI]-和[TFSI]-基离子液体与共溶剂组成的二元体系的微观结构和分子间相互作用进行研究,主要研究体系中的氢键相互作用、C-H···π相互作用、作用体的存在形式及溶液结构在共溶剂稀释的过程中的变化。
论文部分内容阅读
基于双氟磺酰亚胺([FSI]-)和双三氟甲磺酰亚胺([TFSI]-)阴离子的离子液体在电化学中具有潜在的应用。然而,关于它们的微观性质依然不清楚。本论文将多种光谱学手段与量子化学计算方法相结合,对[FSI]-和[TFSI]-基离子液体与共溶剂组成的二元体系的微观结构和分子间相互作用进行研究,主要研究体系中的氢键相互作用、C-H···π相互作用、作用体的存在形式及溶液结构在共溶剂稀释的过程中的变化。此外,也探究了在离子液体中引入功能基团-醚基,给离子液体的结构和性质带来的影响。文中所用[FSI]-和[TFSI]-基离子液体–共溶剂体系如下:1-乙基甲基醚-3-甲基咪唑双氟磺酰亚胺盐(EOMIMFSI)/1-乙基-3-甲基咪唑双氟磺酰亚胺盐(EMIMFSI)-乙腈(CH3CN)、1-乙基甲基醚-3-甲基咪唑双三氟甲磺酰亚胺盐(EOMIMTFSI)-氯仿(CHCl3)/CH3CN/二甲基亚砜(DMSO)、EOMIMFSI/EOMIMTFSI-甲醇(CH3OH)、1-乙基-3-甲基咪唑双三氟甲磺酰亚胺盐(EMIMTFSI)/N-丁基吡啶双三氟甲磺酰亚胺盐(Bpy TFSI)-甲苯(C6H5CH3)。其中,在EOMIMFSI/EMIMFSI-CH3CN体系中,通过对比研究,发现在离子液体的阳离子上引入醚基,不仅减弱了阳离子与阴离子/CH3CN间的氢键相互作用也改变了离子液体与CH3CN的相互作用位点。此外,鉴定了两个体系中的离子团簇、小离子团簇和离子对等复合物,从而获得了它们的微观结构信息。在EOMIMTFSI-CHCl3/CH3CN/DMSO体系中,随着共溶剂稀释的加入,三种体系的氢键相互作用增强,氢键相互作用强度依次如下:EOMIMTFSI-DMSO>EO-MIMTFSI-CHCl3>EOMIMTFSI-CH3CN;DMSO能打破EOMIMTFSI中阴阳离子之间的强的相互作用,在超额红外光谱中观察到[EOMIM]+-DMSO复合物;CHCl3和CH3CN不能打破静电相互作用,仅观察到离子团簇-共溶剂和离子对-共溶剂复合物。在EOMIMFSI/EOMIMTFSI-CH3OH体系中,CH3OH的加入增强了两个体系的氢键相互作用,且相对于EOMIMTFSI,EOMIMFSI能与CH3OH形成更强的氢键。此外,对离子团簇-CH3OH、离子对-CH3OH以及离子-CH3OH等复合物进行了指认。在EMIMTFSI/Bpy TFSI-C6H5CH3体系中,EMIMTFSI/Bpy TFSI上的H原子位于苯环上/下方,与C6H5CH3分别形成C2–H···π键和C2,6–H···π键。在这两个体系中,相互作用强度如下:EMIMTFSI-C6H5CH3>Bpy TFSI-C6H5CH3。由于C6H5CH3不能打破所研究体系中离子对的阴、阳离子间的相互作用,因此,在两个体系中只能观察到离子团簇-C6H5CH3和离子对-C6H5CH3复合物。
其他文献
目前,贵金属Pt是最理想的析氢反应(HER)电催化剂,但由于其储量丰度低和价格高昂,严重阻碍了其商业应用。Ru的成本仅为Pt的4%,但具有与Pt类似的氢键强度,是Pt的最佳替代品。然而,Ru的HER活性仍逊色于Pt催化剂,且在电解液中存在持续溶解的问题,导致催化活性发生明显衰退。因此,寻找一种有效的方法来提高Ru催化剂的活性和稳定性,对于推动氢能发展具有重要意义。基于此,本论文旨在通过构建Ru基异
鉴于目前人们已经认识到保护环境和节约资源的重要性,寻求淡水资源和开发利用太阳能已经引起人们的广泛关注。为此人们致力于开发新的光热材料,利用太阳能进行海水脱盐淡化,以获取淡水,实现保护环境和节约资源的目的。但目前存在如太阳能蒸发水性能偏低、太阳能蒸发器制备成本高昂、制备工艺复杂以及难以实现大规模应用等诸多问题,严重限制了海水淡化的大规模应用。为此,在本文中,我们致力于探索简单且低成本的方法来制备高效
氨不仅是必不可少的生物分子,而且还有重要的农业和工业应用。此外,由于其极高的氢含量,氨被认为是一种潜在的绿色储能载体。虽然氮在大气中非常丰富(78%),但由于N≡N(941 KJ mol-1)的超高离解能,很难将氮转化为氨。随着工艺的广泛应用,大规模人工氨生产的问题似乎已经得到解决。然而,传统的Haber-Bosch工艺要求苛刻的条件,消耗大量能源,并造成空气污染。因此,迫切需要开发一种在环境条件
改革开放以来,随着我国经济迅速发展,尤其是伴随近年来互联网行业的兴起,人们对于生活水平和生活质量的要求有了显著提高,旅游成为大众体验生活的一种新方式。在这一进程中,民宿作为依附于旅游业崛起的新型居住方式,开始进入大众视野。蒙阴作为我国5A级国家森林公园,有着独特的自然风景和民风民俗,每年都会吸引大量游客来此居住游玩,以此催生了蒙阴民宿的诞生。实地调查发现,蒙阴民宿尚处于起步阶段,只有个别两三例精品
缺陷工程作为调节电子结构和界面配位的一种新策略,近年来逐渐兴起,尤其是具有较低形成能的氧空位可以对材料的一些性能进行灵活、高效的调控,在催化、腐蚀防护、热涂层、传感器、微电子等先进技术中得到不断的应用。并且缺陷位独特的电子结构,为材料表面的进一步修饰提供了无限可能,有着巨大的应用前景。本文以液态金属钾钠合金为还原剂,通过液相剪切辅助的方法,可以在室温下快速制备各种缺陷氧化物。为了验证这种合成策略的
当整数k≥2时,k重除数函数d k(n)表示n=n1n2…nk的解的个数,其中n1,n2,…,nk为正整数.本文中我们利用Selberg-Delange方法和Berry-Esseen不等式,首先研究了d k(n)zω(n)在短区间上的均值问题,给出了其均值的渐近公式.在此基础上,我们证明了短区间上权为d k(n)的Erd(?)s-Kac型定理,并且证明了其中的余项估计是最优的.同时我们还研究了函数
极大极小问题是一类重要的优化问题,在工程设计、经济管理等领域有着广泛的应用。本文对极大极小问题的梯度类算法进行了研究,研究的极大极小问题包含了一般结构极大极小问题和张量结构极大极小问题。本文主要内容如下:(1)介绍了极大极小问题的研究现状,提出了一类张量结构极大极小问题,并简单介绍了一般结构极大极小问题以及张量结构极大极小问题的转化求解方法。(2)提出了求解极大极小问题的光滑最速下降法、光滑三项共
在癌症治疗进程中,纳米给药系统的问世不但避免了化疗对人们身体的毒副作用,而且还避免了肿瘤切割带来的身体损伤,为癌症的治疗提供了有效的手段。然而,由于肿瘤组织的高致密性,纳米药物很难进入肿瘤组织或肿瘤细胞完成药物传递过程,药物穿透肿瘤的效率低下已成为制约纳米药物发展的瓶颈。在此,我们利用肿瘤组织微环境中高浓度的γ-谷氨酰转肽酶(GGT)可以特异性识别并催化含有γ-谷氨酰基的底物,使得底物中的氨基暴露
国家乡村振兴局正式挂牌成立,标志着我国的乡村振兴战略发展到了新阶段。新农村生态建设和休闲农业、民宿经济、乡村旅游等农村特色产业也将得到极大的政策鼓励,传统村落的建设更将实现跨越式发展。传统村落作为农耕文明的载体,在传承历史文脉和展现地域文化方面具有重要的意义。胶东沿海传统村落不仅具有丰富的自然资源和历史文化内涵,其传统建筑和院落格局保留也相对完整,具有较高的研究价值。但是在近几年开发的过程中出现村
医用敷料是用于促进创面愈合的保护性材料。研究表明细菌感染是导致愈合延迟甚至死亡的主要原因,因此,有必要对医用材料进行抗菌功能改性。此外,具有特殊结构和性能的高分子材料成为医用敷料领域的研究热点,其不仅拥有良好的抗菌活性,而且经过特殊成型后,更加适合用于医用敷料。尽管已有多种抗菌敷料被开发出来用于促进创面愈合,但这些敷料仍缺乏主动刺激皮肤细胞(上皮细胞、成纤维细胞、干细胞等皮肤相关细胞)迁移来加速创