论文部分内容阅读
对二十一世纪的电信业而言,带宽的需求正在不断增加。波分复用(WDM)技术的问世,大大提升了光纤传送的数据量。目前,一些关键技术的发展有望彻底改变这种状况。其一是应用大范围可调谐激光器,它可调整到国际电信联盟(ITU)指定的任意信道,取代固定波长激光器,这将大大降低系统运行的成。其二是光子集成回路(PIC),它将允许通过单片集成降低成本。与这些关键技术配套的设备是搭建下一代高效、高带宽光纤网络的理想积木。类似于电子集成中的方式将分立元件集成到一个系统中,可以有效地提高性能、可靠性和功能性,并同时降低制造成本。光子集成回路的制作需要将多个带隙结构整合在一个单一的半导体芯片里。量子阱混合(QWI)是一种很有前途的实现多功能单片集成元件的技术。与选择性区域外延和蚀刻再生长技术相比,量子阱混合技术要简单得多,更好的重复性,并可有效地调节量子阱结构的带隙。在其它潜在的实现单片光子集成回路的技术中,在选定的区域进行生长后量子阱混合的方法,可以增加半导体量子阱结构的有效带隙能量。杂质和点缺陷,比如自由空位和填隙,能加速由热引起的混合过程。基于以上认识,本论文工作拟研究基于生长SiO2和Al2O3后的紫外激光的量子阱混合,并探索与此对应的新型晶片加工技术。其中的量子阱混合过程中允许形成多个量子阱带隙,理想情况下每一个对应于特定的集成组件。我们调查了紫外线照射如何创建这些点缺陷,以及在特定区域的InP量子阱结构的点缺陷和热扩散是如何控制量子阱混杂的。本论文工作探究了基于SiO2, A12O3和紫外激光的量子阱混杂技术领域的工作,并实现了该技术在光子集成回路的光子器件中。主要的创新包括:1.发展了紫外激光诱导量子阱混合技术,首次将其应用于压应变的量子阱结构,得到了142nm的蓝移,比普通量子阱结构中的蓝移更大,同时具有增强的PL强度和更窄的半极大处全宽度(FWHM).2.使用紫外激光诱导量子阱混杂技术,在InGaAsP量子阱结构上制作了无源光波导。光波导在1545nm的损耗从110dB/cm降到20dB/cm.3.使用紫外激光诱导量子阱混杂技术,在压应变InGaAsP量子阱结构上制作了激射波长为1435nm的FP腔激光器,并且得到了更低的阈值电流和更大的输出功率。4.实现了在标准的InGaAsP/InP压应变多量子阱结构上的氩离子诱导溅射SiO2的量子阱混合,并且系统地研究了射频功率、退火温度的改变与量子阱PL峰蓝移、PL强度的关系。5.第一次提出并研究了在带和不带牺牲层的InGaAsP/InP多量子阱结构上的Al2O3等离子体诱导量子阱混杂技术,并且获得超过110nm的蓝移。