【摘 要】
:
本文采用CFD数值模拟软件FLUENT,建立了二维模型,对氢气/空气预混气在全填充多孔介质平板微小燃烧器内的燃烧过程进行了数值模拟。定义了多孔介质预热区、反应区、壁面预热区三个区域和回热效率、多孔介质和壁面在反应区的热损失效率。采用参数化的研究方法定量分析了多孔介质导热系数(ks)、孔隙率(ε)、壁面导热系数(kw)、当量比(Φ)、进口气体流速(Uin)等因素对燃烧温度(Tf)、多孔介质回热以及壁
论文部分内容阅读
本文采用CFD数值模拟软件FLUENT,建立了二维模型,对氢气/空气预混气在全填充多孔介质平板微小燃烧器内的燃烧过程进行了数值模拟。定义了多孔介质预热区、反应区、壁面预热区三个区域和回热效率、多孔介质和壁面在反应区的热损失效率。采用参数化的研究方法定量分析了多孔介质导热系数(ks)、孔隙率(ε)、壁面导热系数(kw)、当量比(Φ)、进口气体流速(Uin)等因素对燃烧温度(Tf)、多孔介质回热以及壁面回热的影响。数值模拟结果表明:多孔介质导热系数是影响燃烧温度、多孔介质和壁面回热的重要因素,随着多孔介质导热系数的增加,预热区对流回热效率(ηg-shr)和多孔介质导热效率(ηcondhr)上升,多孔介质辐射效率(ηradhr)、壁面对流回热效率(ηg-whr)和壁面导热效率(ηcondw)下降,燃烧温度下降;多孔介质孔隙率显著影响燃烧温度,减小多孔介质孔隙率能明显增强气体与多孔介质对流换热,预热区对流回热效率和多孔介质导热效率上升,壁面对流回热效率和壁面导热效率下降,反应区内总的散热损失和预热量之比(Qoverallhl/Qoverallhr)显著增大;壁面导热系数增大使预热区对流回热效率下降,壁面对流回热效率上升;预热区对流回热效率、壁面对流回热效率与当量比呈负相关趋势;随着进口气体流速增大,多孔介质导热效率、预热区对流回热效率呈现出先上升后明显下降的趋势,壁面对流回热效率先上升后趋于平缓。上述研究结果对多孔介质微小燃烧器设计具有一定的理论指导意义。
其他文献
海洋占地球表面积的三分之二,拥有丰富的波浪能资源。其中南海作为我国近海中面积最大,水最深的海区,具有很高的开发潜能。高精度的波浪数据在海洋资源的利用、海上贸易、台风预报以及海洋工程等方面发挥着重要的作用。为解决现场测量数据的高成本问题,提高南海波浪数据的可靠性,本文利用海浪数值模拟的方法实现了对南海波浪能资源的长期评估。首先,通过分析总结国内外应用海浪数值模拟的方法,重点介绍了WAVEWATCH-
我国以工业生产余热和内燃机余热为代表的中高品位余热能数量大且品质高,极具回收潜力。有机朗肯循环可以实现对余热资源的有效利用,而工质对余热回收效率有很大影响。传统工质存在高温分解和环境破坏问题;碳氢类工质分解温度高,循环性能好但有可燃性;二氧化碳工质热源匹配性好,利于系统小型化,但其循环效率低。二者混合组成不同配比的碳氢/二氧化碳混合工质可以结合各自优势,达到对循环性能、安全性和环保性的平衡。但不同
沸腾现象由于其良好的传热性能,在核能、化工、生物医疗、航空航天、微电子机械等与传热(冷却)技术密切相关的领域有着广泛的应用。例如,近年来电子芯片的快速发展,其所需要的换热量在直线上升,发热密度已经达到了MW/m2量级。这一热流密度值已超过以水为介质的池沸腾及常规流动沸腾的临界热流密度。因此,提高沸腾传热的临界热流密度是提升冷却技术性能的关键,是工业应用领域的迫切需求。本论文针对在电子芯片等微小型发
柴油喷雾燃烧过程受到氧气比例和稀释气体组分的直接影响,同时高氧条件下不同燃料特性对喷雾燃烧发展的影响规律也有待揭示。本研究使用多种光学诊断方法,在一台高温、高压可视化定容燃烧弹上,针对不同稀释气体组分以及宽广氧气浓度范围,研究了不同柴油燃料特性的喷雾火焰特征。本文首先采用火焰自发光高速成像研究了不同稀释气体(Ar和N2)在10%-21%的氧浓度范围内对柴油喷雾着火和火焰发展过程的影响,采用双色法研
部分预混燃烧(PPC)具有实现高效率和低排放的潜力,成为近年来国内外研究的热点。已有研究表明,燃料特性对部分预混燃烧和排放具有重要影响,特别是燃料辛烷值(RON)和敏感性(S)是影响燃料自燃着火的主要因素。为实现PPC燃烧在不同负荷条件下的优化控制,本文利用甲苯、乙醇、正庚烷、异辛烷配制了RON分别为70和90的多种敏感性的甲苯参考燃料(TRF)和乙醇参考燃料(ERF),并在单缸柴油机试验台架上研
有机朗肯循环(organic Rankine cycle,ORC)已成为中低温热能回收利用的有效手段和研究热点。ORC的输出功根据中低温热源温度与工质的临界温度之间的关系,存在优化工况或单调增加的两种情况,且单调递增的循环性能优于优化工况。引起这种差异的主要原因是吸热过程传热窄点位置不同导致吸热量随蒸发温度的不同。对于中低温热源,采用高临界温度工质(如R245fa)的ORC一般具有优化工况,且传热
燃油喷射系统喷射压力的提高是改善汽油机动力性、经济型与排放性的关键,传统的控制中存在参数标定量大、不确定扰动多以及全生命周期运行中的老化、磨损和积碳等问题,对控制算法的全工况、自抗扰能力与全生命周期自适应能力提出较高要求。本文结合自学习的精确模型前馈控制与自抗扰反馈控制设计了无标定控制算法,并借助仿真平台与实验平台对控制算法展开验证。首先,基于对燃油喷射系统机理的深入理解建立瞬态对象模型,利用1.
在内燃机中采用高压共轨燃料喷射系统实现燃料供应的精确控制,是满足日益严苛的排放法规要求和能效提升的有效手段之一。但随着喷射压力的逐步提高,液体燃料快速降压带来的空化问题也随之变得不容忽视,空化不仅会造成空蚀而影响动力元器件的可靠性和寿命,还会对系统流通能力造成影响,降低燃料喷射系统的性能,因此高压共轨燃料喷射系统中的空化流动机理的探究与问题的缓解,对燃料喷射系统高可靠性和高一致性的能力提升有重要研
火焰不稳定性可以改变局部火焰形态和结构,引起层流火焰的自加速,从而影响放热率、污染物排放甚至导致发动机爆震。本文对二维圆柱形乙醇/空气火焰和掺氢乙醇/空气火焰在不同压力和当量比下的层流燃烧特性和胞状不稳定性进行了详细数值模拟和理论研究。计算使用简化的乙醇骨架机理和详细输运参数。结果表明,火焰不稳定性随初始压力的增大而增强,随当量比增大呈现非单调变化,在略富燃(φ=1.2)时最不稳定。之后,通过线性
乙醇作为一种可替代含氧燃料,在实现柴油机高效清洁燃烧上有重要的研究意义,但乙醇与柴油的互溶性较差,如何提高乙醇与柴油的互溶性以及在柴油机上更好的应用乙醇燃料是当前研究的热点之一。同时,聚甲氧基二甲醚(PODE)是一种新型的含氧燃料,PODE具有较高的十六烷值(CN)和较高的氧含量,且PODE中不含C-C键,是一种很好的潜在的柴油替代燃料。本文首先开展了PODE、乙醇、柴油之间的互溶性研究,然后在一