论文部分内容阅读
第一部分介绍了交互作用的定义、分类、研究意义和国内外相关研究进展,讨论了相加交互作用和相乘交互作用的关系,详细综述了相乘和相加交互作用分析相关的技术细节,包括交互作用的研究设计、分析模型、分析程序、结果报告和解释;讨论了分析中模型和程序的选择、分析中评价指标的选择、可信区间计算方法的选择。随后,通过一个实例分析,展示了交互作用分析过程和结果报告的格式。本文旨在帮助研究者深入理解医学研究中的交互作用,并为在分析中选择合适的模型和方法提供参考。接着,进一步综述了交互作用分析中的常用技术和常见问题,常用技术包括数据变换和分析方法,交互作用分析中的常见问题包括多重共线性问题、正确使用标准化回归系数、交互作用与非线性效应的区分、缺失值填补。最后,综述了交互作用筛选中涉及的统计方法。此外,在附录中推导了基于Wald检验的广义线性模型中交互作用分析的样本量估计公式。第二部分首先从一个假设检验中的各种错误指标的基本定义与关系出发,推及多个假设检验下Ⅰ型错误控制,回顾了 Ⅰ型错误控制指标总Ⅰ型错误率(FWER)和错误发现率(FDR)的发展历史,二者之间的联系与区别。系统综述了 Ⅰ型错误控制中的常用公式、常用指标、常用软件(SAS和R)及其软件实现细节。随后,介绍了 Ⅰ型错误控制中的一类方法:闭包检验与分层分析,并介绍了常见FWER控制方法与闭包检验相结合的例子。最后,综述了处理多个假设检验之间相关的方法,其中最著名的方法是Candes等(2018)提出的基于Lasso惩罚的Model-X knockoff框架。第三部分探讨了 Model-X knockoff框架用于高维变量选择中的Ⅰ型错误控制,把Model-X knockoff框架推广到MCP和SCAD两种非凸正则化方法和极高维变量选择方法SIS中。模拟研究显示:采用Model-X knockoff框架结合正则化方法和SIS后,能降低单用正则化方法和SIS的FDR,并有效控制到指定水平附近,筛选变量个数显著降低,但是功效会下降,FNR和FPR水平差异不大,三种正则化方法和SIS结合knockoff框架的方法筛选的变量个数、功效、FNR和FPR非常接近,只在个别情况下,Lasso的功效稍高。探索了把Model-X knockoff框架用于二阶段交互作用筛选方法中主效应的FDR控制,模拟结果显示,控制主效应的FDR,可以降低主效应和交互效应的筛选个数,筛选出主效应的功效和筛选出交互效应的概率仍然很高。此外,附录中列出了Ⅰ型错误控制的相关专著和国内外综述。最后总结了前面两部分需要特别注意的地方,讨论了第三部分模拟研究中发现的问题,最后,提出了本研究进一步的研究方向。