【摘 要】
:
移动互联网的普及和发展给人们生活的各个方面带来了很大的便利,但是与此同时,为了使用这些便利的功能,人们需要通过互联网传输大量包含个人信息的隐私数据。各种原因导致的数据泄露也得到越来越多的关注。本文对于现有的数据泄露检测技术进行了调查研究,通过对比分析国内外的相关工作可以发现,目前的数据泄露检测方法存在一定的不足。一方面,大部分方法无法保证检测中数据的安全,另一方面,部分使用云端计算能力的方法,检测
论文部分内容阅读
移动互联网的普及和发展给人们生活的各个方面带来了很大的便利,但是与此同时,为了使用这些便利的功能,人们需要通过互联网传输大量包含个人信息的隐私数据。各种原因导致的数据泄露也得到越来越多的关注。本文对于现有的数据泄露检测技术进行了调查研究,通过对比分析国内外的相关工作可以发现,目前的数据泄露检测方法存在一定的不足。一方面,大部分方法无法保证检测中数据的安全,另一方面,部分使用云端计算能力的方法,检测结果可能会出现误报且无法保证检测的实时性。为解决上述问题,本文提出了一种本地端的实时数据泄露检测方法,对检测的实时性以及检测中数据的安全性进行研究。本文主要工作如下:本文提出了一种本地端的实时数据泄露检测方法。该方法主要可以分为三个阶段。预处理阶段,接收待检测的文本数据,并且将文本数据分割为适当的长度。数据变换阶段,对文本数据以及本地存放的用于检测的隐私数据库,用异或操作进行数据变换,随后对隐私数据库进行重排序,使所有隐私数据重新恢复有序,该阶段的操作可以有效保护检测中数据的安全性。检测阶段,对于文本数据使用改进的后缀数组算法进行数据泄露检测。本文还对与整个方法中的所有数据处理流程进行了优化,以进一步提高性能。本文使用Java对于所提出的方法进行了实现,并通过对比实验与仿真实验对其性能进行了测试。其结果表明本文中提出的方法在实现数据保护的前提下,能够保证检测的实时性,具有较高的检测效率。
其他文献
随着科技发展,诸如全球定位系统之类的位置获取设备的部署迅速增长,目前已经产生了庞大的轨迹数据,其中包含许多有价值的信息,并且已经被用于许多实际应用中,比如城市计算和智能交通系统。对这些轨迹数据的分析处理成为关键,本文提出了一种基于轨迹分段的新颖轨迹总结方法。它是一种综合了轨迹异常检测、轨迹聚类和轨迹分段的多角度分析方式。本文的基于分段的轨迹总结框架包括五个阶段。首先,执行基于搜索窗和相对距离比的异
车载自组织网络(VANETs)是移动自组织网络中的一种,它支持车对车(V2V)和车对基础设施(V2I)通信。自组织性、分布式网络和高度动态的拓扑是VANETs的三个重要特征。VANETs的特点及其在道路安全中的应用引起了工业界和学术界的浓厚兴趣,它在改善交通管理系统,控制交通流量以及改善用户驾驶体验方面有着重要研究意义。然而在这些应用部署前必须先解决网络中信息安全和用户隐私保护问题。聚合签名认证协
如今,越来越多的应用和系统都由神经网络(深度学习)所驱动,影响着或者将影响人类日常生活中的许多方面,比如推荐系统、人机交互甚至是安全防护等领域,具体场景包括信用账户评估、垃圾邮件过滤、车牌识别等等。但是神经网络本身也有缺陷,即便是基于深度神经网络的图像分类器也容易受到微小的、难以察觉扰动的影响。恶意生成的对抗样本,虽然不会对人类肉眼的识别过程造成较大的影响,但它却会利用神经网络的不稳定性,误导模型
知识图谱的表示学习旨在将实体和关系投影到低维连续的向量空间中,从而使知识图谱与机器学习模型兼容。知识图谱补全是预测实体之间缺失关系的任务,知识库中有大量的关于实体描述的重要文本信息,而现有的基于卷积网络结构的知识图补全模型只仅仅考虑表明实体之间关系的知识三元组,而没有考虑到实体的文本描述。为此,论文提出了基于门控卷积神经网络的文本增强嵌入模型(GConvTA),将三元组的结构向量与实体描述编码得到
线条画是一种简单有效的形状可视化工具,它使用简单的线条表示图像的主要信息。线条画的特点主要包括连续性与艺术性两个方面。连续性是指画家在绘画时使用连续的线条进行绘制;艺术性是指画家在绘画时有自己独特的风格,而不是单纯地临摹物体的边缘,绘制的线条画具有一定的艺术性和吸引力。针对目前方法生成的结果中存在的线条不连续的问题,提出了一种基于边缘切向流和显著性图的连续性增强的线条画生成方法。通过沿边缘切向流进
目标跟踪技术,指在第一帧框选出感兴趣的目标,随后在一段图像序列中的每一帧图像实时地跟踪感兴趣的运动目标,是计算机视觉中的一项重要技术,在视频监控、安全监控、自动驾驶和人机交互等方面有着广泛的实际应用。其中主动目标跟踪是利用带移动平台的相机,通过图像反馈控制相机运动自动跟踪感兴趣的目标并使其始终保持在视野中心,相比于静态相机跟踪,能够具有更广泛的视野,并更好的关注目标。但是这种只使用一个相机而忽略来
高尔基体从内部结构上可以被细分为三个组成部分:高尔基体顺面网络,高尔基体堆和高尔基体反面网络。高尔基体驻留蛋白质是每个组成部分功能的主要承担者,蛋白质亚高尔基定位预测是确定高尔基体驻留蛋白质在高尔基体内部的位置,有助于深入了解高尔基体内部的工作机制。本篇论文中我们首次将高尔基体堆作为高尔基体定位考虑到蛋白质亚高尔基的定位预测中,构建了第一个包含有三种类型高尔基体驻留蛋白的基准数据集。在对蛋白质序列
在数据分析、模式识别、机器学习等领域中,主成分分析是经典的特征提取算法之一。不论是一维主成分分析还是二维主成分分析,它们都是以欧式距离的平方作为相似度的度量,这样导致过分偏爱距离较远的点,算法鲁棒性较差。虽然大多数现有的鲁棒主成分分析和有关基于F范数的二维主成分分析方法可以减轻图像分析和模式识别领域中对异常值的敏感性。但是,现有方法不光没有保留优化目标中的数据结构信息,也不具有广义性能的鲁棒性。为
随着人工智能与深度学习的高速发展,将具有抽象特征的医疗影像与深度学习进行结合已经成为智能医疗诊断的发展趋势。甲状腺超声影像是基于人工智能进行甲状腺结节相关疾病辅助诊断的重要基础,但已有图像通常包含标记结节位置信息的特殊“十字”标记符号,十字标记干扰了深度学习算法提取到的特征和诊断结果,因此对含有特殊的十字标记的甲状腺结节影像进行修复具有重要的意义。目前图像修复算法在自然图像场景下的修复已经取得了良
视频显著性检测通过模拟人类视觉注视机制,快速辨别动态场景中的感兴趣区域,提高视频数据的分析和处理效率。由于视频场景复杂,包含模糊,遮挡,相机运动等多种干扰因素,加之对象数量多,对象间存在语义交互关系,因此视频显著性检测难度更大,更具挑战性。针对视频显著性检测的关键技术难点在于如何充分理解场景中的语义逻辑,运动特征以及时序关系,以推演的形式合理地计算每一帧的显著区域,以满足显著对象的时间一致性特点。