Ruin Probability with Copula-dependent Claims

来源 :南开大学 | 被引量 : 0次 | 上传用户:QiuWK
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在关于破产概率的经典理论中,对于独立性的假设是其基础。在该论文中,我们结合Copula函数,去掉了独立性的假设,并通过模拟的方法得出了在相关的条件下的破产概率和破产时间。该文主要通过将不同族的阿基米德Copula函数假如模型中,从而模拟了在不同相关类型下的不同的破产概率和破产时间,以及它们和初始准备金的关系。并且,通过Kendall秩相关系数来度量不同的相关类型的相依程度,从而将相同相关度下的不同相关类型的破产概率和破产时间进行了比较。
其他文献
本文主要研究了单位圆盘D上加权Besov空间的函数系数并给出了一个类似的Fehér-Riesz不等式,之后通过这两个结论对加权Besov空间内的函数的增长性世行估计。本研究主要分为四
本论文主要研究离散Dirac方程在不同边界条件下特征值的性质.本文研究了离散Dirac方程在Dirichlet边界条件下特征值的个数、在周期和反周期边界条件下特征值的重数等问题.并
随着科学技术的不断进步,人们对现实世界的认识越来越接近本质,因此现实系统中不可避免的随机和时滞因素已成为众多学者研究的重点.特别是,近年来在物理学、工程技术、生物工
广义仿紧空间的逆极限是国内外拓扑学者热门的研究课题,具有十分重要的理论意义和应用价值,本文对几乎次亚可膨胀空间、序列中紧空间、σ-cf-可膨胀空间、点星形正紧空间和遗传