论文部分内容阅读
为实现齿轮箱故障的在线检测,提出基于递推AR模型参数辨识的齿轮箱振动信号在线辨识方法。对实验室的齿轮箱进行不同工况下振动信号的检测,利用最优辅助变量法确定其自回归模型的阶次和模型参数的初值,以自回归模型系数作为状态变量,采用Kalman滤波器技术进行在线递推参数辨识。实验结果表明,该方法中参数变化量的2-范数会发生突变,能检测出齿轮磨损和轴承外圈剥落的故障。