一种结构受限的异方差线性判别分析

来源 :中文信息学报 | 被引量 : 0次 | 上传用户:lishuangjie2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
异方差线性判别分析(HLDA)因在语音识别中起到了巨大的特征去相关作用而被广泛利用。然而在训练数据不足或特征维数较高时,HLDA易出现不稳定性和小样本问题。根据特征的矩阵表示形式,提出了一种结构受限的HLDA。首先用二维线性判别分析(2DLDA)压缩矩阵形式的特征,然后作一维的HLDA。通过分析我们指出,二维的特征变换实际上是一种结构受限的一维特征变换。在RM库上的实验,受限HLDA对常规HLDA的词识别错误相对下降12.39%;在TIMIT库上的实验,受限HLDA对常规HLDA的音素识别错误相对下降4.
其他文献
该文基于山西大学自主开发的中文阅读理解语料库CRCC v1.1版,根据问句和候选答案句的对应关系,构建了词层面以及句法层面共计35个特征,基于最大熵模型对中文阅读理解问题回答进行
阻碍互联网资源在世界范围内广泛共享的一个主要障碍是多语言问题,而跨语言信息检索是解决这个问题的有效方法之一。本文从定义跨语言信息检索系统开始,给出了一个标准的跨语言