论文部分内容阅读
基于传统有限元理论,将每个结点位移的Lagrange型插值空间推广为具有任意多个广义位移的函数展开式,在不增加结点个数的前提下,仅通过提高结点插值函数的阶数,达到提高有限元精度的目的,建立了三维广义八结点等参单元的有限元列式,探讨了广义有限元的程序实施细则.通过对悬臂梁、曲梁以及5型拱坝的实例计算,体现了广义有限元法的优越性,为拱坝等结构计算分析提供了一种新途径.