论文部分内容阅读
摘要: 应用Lagrange方程建立了直升机桨叶/吸振器系统的非线性振动模型,将一种规范型计算方法引入到桨叶/吸振器系统的组合共振研究,分析了该系统在发生组合共振时的稳定性和局部分岔特性。利用多尺度法求出系统平均方程,并对平均方程存在一对纯虚特征值与双零特征值的两类临界情形进行了研究,得到了系统的Hopf分岔解、分岔路径以及转迁曲线,给出了初始平衡解的稳定区域。对每一种情形,理论预测结果均与RungeKutta验证结果完全一致。关键词: 非线性振动; 组合共振; 吸振器; 多尺度法; 规范型方法
中图分类号: O322文献标志码: A文章编号: 10044523(2015)02024807
DOI:10.16385/j.cnki.issn.10044523.2015.02.010
引言
近年来,规范型方法获得了很大发展,其中Yu提出并完善了一种结合摄动分析与计算机代数求解规范型的方法[1~8]。利用该方法所得约化系统可以更方便地研究分岔、稳定性等动力学问题,在应用中也收到了良好效果。例如:2008年,Zhou等[9]研究了二自由度舰船俯仰/滚转耦合模型的多种动力学行为;2009年,Wang等[10]研究了直线运动梁组合参激共振的稳定性和局部分岔;2013年,Zhang等[11,12]研究了超声速气流中二维非线性粘性平板和二维功能梯度板在受横向激励以及平面内激励时的稳定性和局部分岔行为。
直升机的振动问题一直是各国学者致力于研究和解决的一个重要问题。直升机飞行过程产生振动的因素有很多,特别是由于桨叶的挥舞、摆振以及气动力的作用会使旋翼产生很大的振动,而机身的振动又会沿桨毂传递上来,与旋翼产生相互作用,从而使振动加剧。为了降低桨叶和机身的振动水平,人们采取了在桨叶或桨毂上安装吸振器的方法,例如吸振器在Boeing Vertol 347、山猫、黑鹰、直六等机型上的安装均取得了令人满意的效果[13,14]。但是如果吸振器参数设置不合理,产生共振,不仅吸振器会失效,还可能导致整个主系统发生失稳,带来灾难性后果[15,16]。因此,对桨叶/吸振器系统动力学行为的研究具有重要意义。
直升机桨叶/吸振器系统不但含有复杂的结构非线性,而且各自由度之间还存在运动耦合,对其进行理论建模和分析均具有一定难度。目前,对于该系统的研究大多通过实验或者数值仿真来进行[17~21],由于解析方法的分析对象一般不能太复杂,所以定性研究较少[13,22,23]。2008年,Nagasaka等[22,23]建立了二自由度桨叶/吸振器和三自由度桨叶/吸振器/机身模型,数值模拟了系统的振动响应并采用van der Pol方法进行了理论验证。该文未考虑桨叶/吸振器系统的结构非线性以及阻尼的影响,也未深入研究其动力学行为。
针对上述问题,本文将Yu的规范型方法引入到直升机桨叶/吸振器系统的动力学分析,为使模型更符合物理实际,在系统结构中加入了阻尼及弹簧非线性因素。采用Lagrange方程建立直升机桨叶/吸振器系统振动模型,利用规范型方法,研究了组合共振条件下,系统平均方程存在一对纯虚特征值与双零特征值的两类临界情形,得到了系统的Hopf分岔解、分岔图以及转迁曲线,并给出了初始平衡解的稳定区域。最后利用RungeKutta算法对理论分析结果进行了数值验证。
4 结 论
本文以非线性直升机桨叶/吸振器系统为研究对象,研究了发生组合共振时的稳定性与局部分岔特性。研究表明,直升机桨叶/吸振器系统含有丰富的动力学现象,对其进行动力学分析是十分必要的。本文在系统平均方程含有一对纯虚特征值和双零特征值的临界情形,分别得到了系统的分岔路径以及转迁曲线,并给出了初始平衡解的稳定区域。上述两种情形的理论分析结果均与RungeKutta数值结果完全吻合。在直升机桨叶/吸振器系统的振动过程中,出现不稳定的Hopf分岔解情形是极其危险的,因此,为了达到吸振目的、保证系统安全,在桨叶上安装吸振器时,要综合考虑吸振器的质量、阻尼、刚度、摆长以及安装位置。在设置上述参数时,需要进行一定的定性分析,以避免出现分岔现象;或者设计控制器,通过控制手段来改变桨叶/吸振器系统的分岔特性。
参考文献:
[1] Yu P. Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales[J]. Nonlinear Dynamics, 2002, 27: 19—53.
[2] Bi Q, Yu P. Symbolic computation of normal forms for semisimple cases[J]. Journal of Computational and Applied Mathematics, 1999, 102:195—220.
[3] Yu P. Computation of norm forms via a perturbation technique[J]. Journal of Sound and Vibration, 1998, 211: 19—38.
[4] Yu P. Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique[J]. Journal of Sound and Vibration, 2001, 247: 615—632.
[5] Yu P, Yuan Y. The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue[J]. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Application & Algorithms, 2001, 8(2): 219—249. [6] Yu P, Zhu S. Computation of the normal forms for general MDOF systems using multiple time scales. Part I: Autonomous systems[J]. Communications in Nonlinear Science Numerical Simulation, 2005, 10(8): 869—905.
[7] Zhu S, Yu P. Computation of the normal forms for general MDOF systems using multiple time scales. Part II: Nonautonomous systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2006, 11(1): 45—81.
[8] Han M, Yang J, Yu P. Hopf bifurcations for nearHamiltonian systems[J]. J. Bifurcation & Chaos, 2009, 19(12): 4 117—4 130.
[9] Zhou L Q, Chen F Q. Stability and bifurcation analysis for a model of a nonlinear coupled pitchroll ship[J]. Mathematics and Computers in Simulation, 2008, 79: 149—166.
[10] Wang X, Chen F Q, Zhou L Q. Stabilities and bifurcation for a flexible beam under a large linear motion with a combination parametric resonance[J]. Nonlinear Dynamics, 2009, 56: 101—119.
[11] Zhang X H. Local bifurcations of nonlinear viscoelastic panel in supersonic flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18: 1 931—1 938.
[12] Zhang X H, Chen F Q, Zhang H L. Stability and local bifurcation of functionally graded material plate under transversal and inplane excitations[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6 639—6 651.
[13] 桑继业. 直升机动稳定性及分叉研究[D].南京:南京航空航天大学,1995. Sang Jiye. Study on dynamic stability and bifurcation of helicopters [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1995.
[14] 贺天鹏,李书,李小龙.直升机旋翼/机体的稳定性研究进展[J].力学与实践,2013,35(3):1—19. He Tianpeng, Li Shu, Li Xiaolong. Research Progress of dynamic stability of helicopter rotor/airframe[J]. Mechanics in Engineering, 2013,35(3):1—19.
[15] Lee C T, Shaw S W. The nonlinear dynamic response of paired centrifugal pendulum vibration absorbers[J]. Journal of Sound and Vibration, 1997, 203(5): 731—743.
[16] Chao C P, Lee C T, Shaw S W. Nonunion dynamics of multiple centrifugal pendulum vibration absorbers[J]. Journal of Sound and Vibration, 1997, 204(6): 769—794.
[17] Bramwell A R S, Done G, Balmford D. Bramwells Helicopter Dynamics [M].2nd ed. ButterworthHeinenmann, 2001.
[18] Nester T M. Experimental investigation of circular centrifugal pendulum vibration absorbers [D]. Michigan State University, 2002.
[19] Miao W, Mouzakis T. Bifilar analysis study, Volume I [R]. NASA Contractor Report. NASA CR159227Volume I, 1980.8. [20] Cassarino S J, Mouzakis T. Bifilar analysis users manual, Volume II[R]. NASA Contractor Report, NASA CR159228Volume II, 1980.8.
[21] Taylor R B, Teare P A. Helicopter vibration reduction with pendulum absorbers[J]. Journal of AHS, 1975, 20(3): 9—17.
[22] Nagasaka I, Ishida Y, Koyama Y. Vibration suppression of a helicopter blades by pendulum absorbers[J]. Transactions of the Japan Society of Mechanical Engineers, 2007, 73: 129—137.
[23] Nagasaka I, Ishida Y, Koyama T. Vibration suppression of a helicopter fuselage by pendulum absorbers: rigidbody blades with aerodynamic excitation force[J]. Journal of System Design and Dynamics, 2008, 2:1 230—1 238.
[24] 胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
Abstract: In the present paper, by using Lagrange equation, a nonlinear vibration model of helicopter bladeabsorber system is established. The normal form method is introduced to the bladeabsorber system for the combination resonance research, and through which, the stability and the local bifurcation characteristics of the bladeabsorber system near combination resonance are analyzed. In order to derive the averaged equations, the method of multiple scales is applied, and then two kinds of critical points for the averaged equations are considered, which are characterized by a pair of purely imaginary eigenvalues and a pair of complex conjugate eigenvalues as well as a double zero eigenvalues. The Hopf bifurcation solution, bifurcation path, and transition curves of the model are obtained respectively, and initial equilibrium stability region is given. For each case, the numerical results obtained by RungeKutta method coincide with the analytical predictions.
Key words: nonlinear vibration; combination resonance; absorber; the method of multiple scales; normal form method
中图分类号: O322文献标志码: A文章编号: 10044523(2015)02024807
DOI:10.16385/j.cnki.issn.10044523.2015.02.010
引言
近年来,规范型方法获得了很大发展,其中Yu提出并完善了一种结合摄动分析与计算机代数求解规范型的方法[1~8]。利用该方法所得约化系统可以更方便地研究分岔、稳定性等动力学问题,在应用中也收到了良好效果。例如:2008年,Zhou等[9]研究了二自由度舰船俯仰/滚转耦合模型的多种动力学行为;2009年,Wang等[10]研究了直线运动梁组合参激共振的稳定性和局部分岔;2013年,Zhang等[11,12]研究了超声速气流中二维非线性粘性平板和二维功能梯度板在受横向激励以及平面内激励时的稳定性和局部分岔行为。
直升机的振动问题一直是各国学者致力于研究和解决的一个重要问题。直升机飞行过程产生振动的因素有很多,特别是由于桨叶的挥舞、摆振以及气动力的作用会使旋翼产生很大的振动,而机身的振动又会沿桨毂传递上来,与旋翼产生相互作用,从而使振动加剧。为了降低桨叶和机身的振动水平,人们采取了在桨叶或桨毂上安装吸振器的方法,例如吸振器在Boeing Vertol 347、山猫、黑鹰、直六等机型上的安装均取得了令人满意的效果[13,14]。但是如果吸振器参数设置不合理,产生共振,不仅吸振器会失效,还可能导致整个主系统发生失稳,带来灾难性后果[15,16]。因此,对桨叶/吸振器系统动力学行为的研究具有重要意义。
直升机桨叶/吸振器系统不但含有复杂的结构非线性,而且各自由度之间还存在运动耦合,对其进行理论建模和分析均具有一定难度。目前,对于该系统的研究大多通过实验或者数值仿真来进行[17~21],由于解析方法的分析对象一般不能太复杂,所以定性研究较少[13,22,23]。2008年,Nagasaka等[22,23]建立了二自由度桨叶/吸振器和三自由度桨叶/吸振器/机身模型,数值模拟了系统的振动响应并采用van der Pol方法进行了理论验证。该文未考虑桨叶/吸振器系统的结构非线性以及阻尼的影响,也未深入研究其动力学行为。
针对上述问题,本文将Yu的规范型方法引入到直升机桨叶/吸振器系统的动力学分析,为使模型更符合物理实际,在系统结构中加入了阻尼及弹簧非线性因素。采用Lagrange方程建立直升机桨叶/吸振器系统振动模型,利用规范型方法,研究了组合共振条件下,系统平均方程存在一对纯虚特征值与双零特征值的两类临界情形,得到了系统的Hopf分岔解、分岔图以及转迁曲线,并给出了初始平衡解的稳定区域。最后利用RungeKutta算法对理论分析结果进行了数值验证。
4 结 论
本文以非线性直升机桨叶/吸振器系统为研究对象,研究了发生组合共振时的稳定性与局部分岔特性。研究表明,直升机桨叶/吸振器系统含有丰富的动力学现象,对其进行动力学分析是十分必要的。本文在系统平均方程含有一对纯虚特征值和双零特征值的临界情形,分别得到了系统的分岔路径以及转迁曲线,并给出了初始平衡解的稳定区域。上述两种情形的理论分析结果均与RungeKutta数值结果完全吻合。在直升机桨叶/吸振器系统的振动过程中,出现不稳定的Hopf分岔解情形是极其危险的,因此,为了达到吸振目的、保证系统安全,在桨叶上安装吸振器时,要综合考虑吸振器的质量、阻尼、刚度、摆长以及安装位置。在设置上述参数时,需要进行一定的定性分析,以避免出现分岔现象;或者设计控制器,通过控制手段来改变桨叶/吸振器系统的分岔特性。
参考文献:
[1] Yu P. Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales[J]. Nonlinear Dynamics, 2002, 27: 19—53.
[2] Bi Q, Yu P. Symbolic computation of normal forms for semisimple cases[J]. Journal of Computational and Applied Mathematics, 1999, 102:195—220.
[3] Yu P. Computation of norm forms via a perturbation technique[J]. Journal of Sound and Vibration, 1998, 211: 19—38.
[4] Yu P. Symbolic computation of normal forms for resonant double Hopf bifurcations using a perturbation technique[J]. Journal of Sound and Vibration, 2001, 247: 615—632.
[5] Yu P, Yuan Y. The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue[J]. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Application & Algorithms, 2001, 8(2): 219—249. [6] Yu P, Zhu S. Computation of the normal forms for general MDOF systems using multiple time scales. Part I: Autonomous systems[J]. Communications in Nonlinear Science Numerical Simulation, 2005, 10(8): 869—905.
[7] Zhu S, Yu P. Computation of the normal forms for general MDOF systems using multiple time scales. Part II: Nonautonomous systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2006, 11(1): 45—81.
[8] Han M, Yang J, Yu P. Hopf bifurcations for nearHamiltonian systems[J]. J. Bifurcation & Chaos, 2009, 19(12): 4 117—4 130.
[9] Zhou L Q, Chen F Q. Stability and bifurcation analysis for a model of a nonlinear coupled pitchroll ship[J]. Mathematics and Computers in Simulation, 2008, 79: 149—166.
[10] Wang X, Chen F Q, Zhou L Q. Stabilities and bifurcation for a flexible beam under a large linear motion with a combination parametric resonance[J]. Nonlinear Dynamics, 2009, 56: 101—119.
[11] Zhang X H. Local bifurcations of nonlinear viscoelastic panel in supersonic flow[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18: 1 931—1 938.
[12] Zhang X H, Chen F Q, Zhang H L. Stability and local bifurcation of functionally graded material plate under transversal and inplane excitations[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6 639—6 651.
[13] 桑继业. 直升机动稳定性及分叉研究[D].南京:南京航空航天大学,1995. Sang Jiye. Study on dynamic stability and bifurcation of helicopters [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 1995.
[14] 贺天鹏,李书,李小龙.直升机旋翼/机体的稳定性研究进展[J].力学与实践,2013,35(3):1—19. He Tianpeng, Li Shu, Li Xiaolong. Research Progress of dynamic stability of helicopter rotor/airframe[J]. Mechanics in Engineering, 2013,35(3):1—19.
[15] Lee C T, Shaw S W. The nonlinear dynamic response of paired centrifugal pendulum vibration absorbers[J]. Journal of Sound and Vibration, 1997, 203(5): 731—743.
[16] Chao C P, Lee C T, Shaw S W. Nonunion dynamics of multiple centrifugal pendulum vibration absorbers[J]. Journal of Sound and Vibration, 1997, 204(6): 769—794.
[17] Bramwell A R S, Done G, Balmford D. Bramwells Helicopter Dynamics [M].2nd ed. ButterworthHeinenmann, 2001.
[18] Nester T M. Experimental investigation of circular centrifugal pendulum vibration absorbers [D]. Michigan State University, 2002.
[19] Miao W, Mouzakis T. Bifilar analysis study, Volume I [R]. NASA Contractor Report. NASA CR159227Volume I, 1980.8. [20] Cassarino S J, Mouzakis T. Bifilar analysis users manual, Volume II[R]. NASA Contractor Report, NASA CR159228Volume II, 1980.8.
[21] Taylor R B, Teare P A. Helicopter vibration reduction with pendulum absorbers[J]. Journal of AHS, 1975, 20(3): 9—17.
[22] Nagasaka I, Ishida Y, Koyama Y. Vibration suppression of a helicopter blades by pendulum absorbers[J]. Transactions of the Japan Society of Mechanical Engineers, 2007, 73: 129—137.
[23] Nagasaka I, Ishida Y, Koyama T. Vibration suppression of a helicopter fuselage by pendulum absorbers: rigidbody blades with aerodynamic excitation force[J]. Journal of System Design and Dynamics, 2008, 2:1 230—1 238.
[24] 胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000.
Abstract: In the present paper, by using Lagrange equation, a nonlinear vibration model of helicopter bladeabsorber system is established. The normal form method is introduced to the bladeabsorber system for the combination resonance research, and through which, the stability and the local bifurcation characteristics of the bladeabsorber system near combination resonance are analyzed. In order to derive the averaged equations, the method of multiple scales is applied, and then two kinds of critical points for the averaged equations are considered, which are characterized by a pair of purely imaginary eigenvalues and a pair of complex conjugate eigenvalues as well as a double zero eigenvalues. The Hopf bifurcation solution, bifurcation path, and transition curves of the model are obtained respectively, and initial equilibrium stability region is given. For each case, the numerical results obtained by RungeKutta method coincide with the analytical predictions.
Key words: nonlinear vibration; combination resonance; absorber; the method of multiple scales; normal form method