论文部分内容阅读
传统聚类算法易陷入局部极值,在数据线性不可分时分类效果较差。为此,提出一种基于最大熵的模糊核聚类图像分割方法。采用最大熵算法对原始图像进行初步分割,求得初始聚类中心;引入Mercer核函数,把输入空间的样本映射到高维特征空间,并在特征空间中进行图像分割。实验结果表明,该方法能减少迭代次数,使分类结果更稳定,从而较好地把目标从背景中分割出来。