论文部分内容阅读
针对视觉词袋(BOV)模型中过大的视觉词典会导致图像分类时间代价过大的问题,提出一种加权最大相关最小相似(W-MR-MS)视觉词典优化准则。首先,提取图像的尺度不变特征转换(SIFT)特征,并用K-Means算法对特征聚类生成原始视觉词典;然后,分别计算视觉单词与图像类别间的相关性,以及各视觉单词间的语义相似性,引入一个加权系数权衡两者对图像分类的重要程度;最后,基于权衡结果,删除视觉词典中与图像类别相关性弱、与视觉单词间语义相似性大的视觉单词,从而达到优化视觉词典的目的。实验结果表明,在视觉词典规