联合多尺度多特征的高分遥感图像场景分类

来源 :电子学报 | 被引量 : 0次 | 上传用户:huangguohao123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高分辨率遥感图像地物信息丰富,但场景构成复杂,目前基于手工设计的特征提取方法不能满足复杂场景分类的需求,而非监督特征学习方法尽管能够挖掘局部图像块的本征结构,但单一种类及尺度的特征难以有效表达实际应用中复杂遥感场景特性,导致分类性能受限.针对此问题,本文提出了一种基于多尺度多特征的遥感场景分类方法.该算法首先设计了一种改进的谱聚类非监督特征(iUFL-SC)以有效表征图像块的本征结构,然后通过密集采样提取每幅遥感场景的iUFL-SC、LBP、SIFT等三种多尺度局部图像块特征,并通过视觉词袋模型(B
其他文献
自20世纪90年代以采,挪威高等教育进行了两次影响较大的改革。文章集中分析了最近一次改革的动因、主要内容及改革过程中不同方面对一些问题进行的争论。在此基础上,结合我国高
准确、快速的状态估计是保证多机器人顺利完成协作搬运任务的关键.然而,大部分现有多机器人协同定位方法都存在一定的局限性,往往无法同时兼顾定位精度与计算复杂度.因此,本
针对辐射源识别中噪声敏感和识别能力不足等问题,提出了一种基于核空间时频特征与栈式稀疏降噪自编码网络的识别系统.通过时频变换、稀疏域降噪和核空间降维投影降低噪声干扰