论文部分内容阅读
提出了粗糙集神经网络用于图像分割的方法.该方法利用粗糙集约简理论对分割后的图像区域特征进行约简,以降低特征向量维数,抽取出规则,然后根据这些规则构造神经网络隐含层的神经元个数,从而确定粗糙集神经网络的结构.粗糙集神经网络中每个神经单元的输入为区域值,输出为决策分类值,此时权值预设为各规则粗糙隶属度值,然后用BP算法迭代,最终实现图像的分割.试验证明,该方法大大缩短了训练时间,提高了精度,并且得到优于常规的分割图像以及满足图像处理的实时性要求.