论文部分内容阅读
针对车辆运动方向持续变化、目标车辆距离远近变化、光照强度变化等场景下,稳定且实时性地跟踪车辆的难点问题,融合自相关矩阵增量主成分分析(Incremental Principal Component Analysis,IPCA)增量学习与粒子滤波算法的基础上,提出一种新的基于表观模型(Appearance Model,AM)的车辆跟踪方法,从跟踪初始利用自相关矩阵与特征值分解构建车辆的子空间图像,通过IPCA增量学习后的子空间均值、特征向量基共同参与似然概率密度的计算,提高粒子滤波算法粒子权值计算的精