初中数学教学的几点思考

来源 :东方青年·教师 | 被引量 : 0次 | 上传用户:zhangtao870508
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  进入新世纪以后,我们面临的问题很多,其中最关键的就是怎样使产业升级,在这方面起重要作用是人才。究竟需要什么样的人才呢,专家们指出需要以下四种素质的人才:①有新观念;②能够不断从事技术创新;③善于经营和开拓市场;④有团队精神。为此初中数学教学应加强学生这四个方面能力的培养。
  一、在数学教学中培养学生的新观念、新思想
  新觀念中不仅包含对事物的新认识、新思想,而且包含一个不断学习的过程。为此作为新人才就必须学会学习,只有不断地学习,获取新知识更新观念,形成新认识。在数学史上,法国大数学家笛卡尔在学生时代喜欢博览群书,认识到代数与几何割裂的弊病,他用代数方法研究几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过具体问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,认识到了曲线的交点与方程组的解之间的关系。主张把代数与几何相结合,把量化方法用于几何研究的新观点,从而创立解析几何学。作为数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。
  例 已知 a>=0,b>=0, 且 a+b=1, 求证  (a+2) (a+2) +(b+2) (b+2)>=25/2
  证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a>=0,b>=0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。证法如下:在平面直角坐标系内取直线段 x+y=1,(0=<x>=1), (a+2) (a+2) +(b+2) (b+2)看作点(-2,-2)与线段x+y=1上的点(a,b)之间的距离的平方。由于点到一直线的距离是这点与该直线上任意一点之间的距离的最小值。而 d*d=( -2-2-1|)/2=25/2, 所以(a+2) (a+2) +(b+2) (b+2)>=25/2.“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。
  二、在数学教学中培养学生的创新能力
  创新能力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达,探索未知领域,寻找客观真理,成为发现者,要让学生自始至终地参与这一探索过程,发展学生创新能力。如在球的体积教学中,我利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生们发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。
  三、在数学教学中培养学生经营和开拓市场的能力
  一切数学知识都来源于现实生活中。同时,现实生活中许多问题都需要用数学知识、数学思想方法去思考解决。如洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得到市场认可,产生良好的经济效益。为此数学教学中应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。由加法原理及解的唯一性,可知原式成立。又如经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。
  四、 在数学教学中培养学生团队精神
  团队精神就是一种相互协作、相互配合的工作精神。数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如我又在讲授球的体积公式时,课前我让25名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 …… 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让余下的学生用厚0.25厘米的纸板依次做半径为10、9.75、9.5 …… 0.5、0.25厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲教学过程中的实验材料为什么让大家各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些使学生认识到只有齐心协力才能达到成功的彼岸。数学教学具有不仅使学生学知,学做;而且使学生学共同生活,学共同发展的目标任务。
其他文献
现代教学理论强调“教会学生学习,培养学生自学能力。”叶圣陶先生也说过:“教是为了不教”,“授之以鱼,不如授之以渔。”新《语文课程标准》提出要积极倡导自主,合作,探究的学习方式,确立了现代阅读理论,充分顾及了学生阅读态度的主动性。因此,在教学过程中,必须强调学生阅读的自主性和独立性,要让学生自己阅读,自己学会阅读,培养学生的自学能力。使学生学习的积极性和主动性得到充分的发挥,而且使学生自身素质不断提
<正>习近平总书记在全国高校思想政治工作会议上的重要讲话,为我们走自己的高等教育发展之路、扎实办好中国特色社会主义高校指明了方向、提供了遵循。我们要认真学习贯彻习
摘要:新课程中的政治和谐教育就是指在课堂教学过程中,巧妙设计和合理安排教学结构中的各个环节,使 “教”与“学”处于和谐状态中。和谐政治课堂的构建是新课程中必然选择,也是新课程理念得到全面实施的重要保证。  关键词:新课程 、 和谐课堂 、教师角色 、教学氛围  高中政治课程改革促进了教师教学方式的转变,体现的是以学生为主体的教学方式,鼓励教师创造性地探索新的教学途径,改进传统死板的教学方法和教学手
《机械设计基础》是高职院校机械专业一门极为关键的基础课,随着新课程改革的逐步深入,高职《机械设计基础》课堂教学过程中也暴露出一些亟待解决的问题,本文首先对此进行了
结构游戏是幼儿非常喜爱的,极富创造性的游戏,幼儿通过利用各种积木、积塑、沙、粘土等材料,运用拼插、摆搭、塑接等手段进行构造,来形象地表现生活中的各种物品,可从小培养幼儿的创造力。但是目前仍有不少幼儿对参加结构游戏缺乏主动性与兴趣。因此,我就怎样引导幼儿参加结构游戏,达到活动的教育目的,作了一些浅显的探讨,获得了以下经验:  一、经常引导幼儿观察周围生活,提高观察力。  观察是进行结构游戏的前提,大
摘要:全文从三大方面阐述了“如何提高思想品德课课堂教学效率”这一中心论断,号召人们在教育教学实践中努力探索教育教学方法,提高课堂教学效率,从而提高教育教学质量。  关键词: 提高 课堂教学 效率  随着新课改的实行,在思想品德教学的实践中,许多教师陷入了迷惘、困惑,发出“越教越难,越教越不会教”的慨叹,也许这是对教学效果不佳的一種反思与悲叹吧!如何能够在课堂教学中激发学生的学习兴趣,发挥学生的
苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探索者。而在孩子的精神世界里,这种需要特别强烈。”现代教学理论也认为,一切教育的影响必须通过学生的主动性、积极性才能达到预期的效果。只有学生积极主动地参与学习活动,才能促使他们主动地发展。下面就在课堂教学中如何激发学生主动参与课堂教学谈一些粗浅的体会。  一、培养正确的学习动机  喜欢学、想学、要求学
摘要:赏识是孩子生命中的阳光,是使孩子健康成长的力量。在教育中,发现每个学生的闪光点,以信任、尊重、理解、赏识来使之最大限度地感受到自身存在的价值,从而激发他们的自尊心与自信心,形成积极向上的健康心理,使之充分发挥自己的潜能,转化缺点,发扬优点,一步步走向成功。因此,当每个孩子都更积极进取时,一个和谐向上的阳光班级就形成了。  关键词:赏识,激励,阳光  “没有爱就没有教育”,而爱的重要体现就是赏