创新教学模式构建高效课堂——以“苏联的社会主义建设”一课教学设计和实施为例

来源 :新课程导学 | 被引量 : 0次 | 上传用户:liuyu80237029
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
历史必修二的中心和主题是“人类社会经济发展历程”,其中“苏联的社会主义建设”这课全景展示了苏联从十月革命建立政权到苏联解体的历史全貌,着重探讨了苏联对经济发展模式的探索和改革.在教学中,应当把这段历史与世界近现代史发展大势联系起来,深刻思考苏联的社会主义建设对苏联以及人类世界留下的经验和教训.
其他文献
记录值的研究是近年来统计学界的一个热门课题,在理论和应用方面具有重要意义。理论上如记录值发生间隔的极限定理,Weibull分布记录值序列部分和的渐进正态性,Burr分布和Freché
在本论文中,我们主要考虑了一类浅水波方程。首先,计论的的是κ≠0的Camassa-Holm方程。我们将对初值假设一定的条件,从而保证相关的解全局存在或者在有限时间内爆破。同时,
“智者顺时而谋”,我们先去适应不可改变的,再去改变可以改变的.歌德说:“挫折是通向真理的桥梁.”在挫折中站起,方知事情的本相,真理的所在,不利的突变,带着有利的种子,蕴藏
本文从图的结构性质出发,利用归纳法和反证法研究了Johnson图以及若干广义Petersen图的关联着色,得到:Johnson图的关联色数xi(J(t,M))=m(t-m+1);当n≡0(mod4),k为奇数时,广义Peters
近年来,无限维动力系统的研究得到了迅速发展,与之相关的数值研究也越来越被人们关注,主要是对原系统如何进行数值模拟的问题,涉及到大时间误差估计,近似吸引子的存在性,稳定性,收敛
M-矩阵代数Riccati方程是近年来受到关注的一类非线性矩阵方程.由于广泛的应用背景,得到了深入的研究,出现了一系列优美的理论结果与数值算法.本文对M-矩阵代数Riccati方程的数
分形中较为著名的Ruelle-Perron-Frobenius定理(简称Ruelle算子定理)现已成为研究动力系统、热力学形式体系、多重分形的一个基本工具.早前,D.Ruelle研究无穷一维格子气模型