论文部分内容阅读
研究小波域隐式马尔可夫模型树(HMT),提出了一种基于小波域HMT模型抑制高斯白噪声的改进图像去噪算法。首先将噪声图像沿水平、垂直及对角方向进行平移变换;然后对平移后的图像进行小波变换,建立其对应的小波域HMT型,分别进行去噪处理,最后取所有去噪图像的均值作为最终的去噪图像。在仿真实验中,对不同程度污染下高斯白噪声的Lena图像分别采用该文算法、小波域硬阈值与软阈值去噪进行比较。结果表明,该文算法很好地保留了图像的细节和边缘信息;提高了图像的峰值信噪比;抑制了Gibbs效应;具有较好的去噪效果。通过