论文部分内容阅读
针对移动机器人定位过程中视觉图像处理速度慢以及特征点提取与匹配实时性、准确性差的问题,提出了基于颜色矩的改进SIFT分级图像匹配算法。首先改进SIFT算法,扩大极值点检测范围;采用Sobel算子计算特征点的梯度方向和幅值;以向量夹角为准则度量SIFT特征相似性,提高SIFT特征提取与匹配的速度和精度。图像匹配时先采用颜色矩对环境图像序列进行相似性排序,改进SIFT特征,再与排序后图像依次进行精确匹配,分级匹配提高了移动机器人的定位速度和精度。实验结果表明:与原SIFT相比,改进SIFT提高了特征向量