论文部分内容阅读
支持向量回归机(SVR)模型的拟合精度和泛化能力取决于其相关参数的选取,因此提出了基于粒子群(PSO)算法的SVR参数优化选择方法;并以不同噪声影响下的sin c函数和实际发酵过程产物浓度的SVR模型为对象,将提出的PSO优化参数方法与现有的交叉验证法、留一法进行比较。仿真结果表明:该PSO优化SVR参数方法可行、有效,由此得到的SVR模型具有更好的学习精度和推广能力。