论文部分内容阅读
对20个ACEI化合物用量子化学方法进行结构优化并计算出10个参数,用9种不同隐含层节点数的BP神经网络研究了ACEI的定量构效关系,建立了节点为10/6/1的三层BP神经网络模型。结果表明:以量化理论计算所得参数可以构建合理的ACEI定量构效关系模型,神经网络模型M6的r^2=0.995,S=0.050,6个验证集化合物的残差平方和为0.002,预测能力明显强于多元线形回归模型,亦优于同类文献报道,可作为ACEI研发领域中预测先导化合物活性的理论丁具。