论文部分内容阅读
针对训练样本集中含有噪声样本、冗余样本以及无关样本,导致分类系统分类性能下降、不稳定的水声目标识别问题,提出了一种新的自适应遗传样本选择算法(Adaptive Genetic Instance Selection Algorithm,AGISA)。算法先随机生成初始种群,接着利用设计的遗传算子(跨代选择、白适应交叉和简化最近邻变异)指导种群进化,每代中对分类贡献大且选择样本数目少的个体适应度值高。提取了实测3类水声目标的多域特征,进行样本选择和分类识别仿真实验,结果表明:AGISA可以选出有效样本子集,在