论文部分内容阅读
针对目前电容层析成像系统图像重建分辨率不高,精确度低的问题,提出了一种新的采用Chebyshev神经网络对电容层析成像系统进行图像重建的方法。该神经网络不仅扩大了网络辨识模型的能力与学习适应性,而且算法简单,学习收敛速度快,有线性、非线性逼近精度高等优异特性。通过对封闭管道的气固两相流进行数据检测,并采用改进后的神经网络算法进行图像重建,实验结果证明该方法能明显改善成像质量,进而证明了该方法的有效性。