论文部分内容阅读
针对大规模文本的自动层次分类问题,K近邻(KNN)算法分类效率较高,但是对于处于类别边界的样本分类准确度不是很高。而支持向量机(SVM)分类算法准确度比较高,但以前的多类SVM算法很多基于多个独立二值分类器组成,训练过程比较缓慢并且不适合层次类别结构等。提出一种融合KNN与层次SVM的自动分类方法。首先对KNN算法进行改进以迅速得到K个最近邻的类别标签,以此对文档的候选类别进行有效筛选。然后使用一个统一学习的多类稀疏层次SVM分类器对其进行自上而下的类别划分,从而实现对文档的高效准确的分类过程。实验