论文部分内容阅读
提出一个基于欧氏聚类(Euclidean Clustering,EC)和支持向量机(suppon Vector Machine,SVM)的变压器故障诊断模型及其求解步骤。选择典型油中气体作为模型的输入参数,按照变压器常见的13种故障类型,利用训练集样本数据建立基于EC和SVM多分类的组合故障诊断模型。通过与其他组合诊断的方法进行比较证明了该模型的有效性。