论文部分内容阅读
标准的多模型粒子滤波检测前跟踪技术是在低信噪比环境下检测与跟踪机动性的微弱目标的有效手段。但是由于其采用固定的运动模型数量,当运动模型数量过大时,模型之间的竞争会导致性能的下降。针对此问题,利用道路信息提出了一种变结构的多模型粒子滤波检测前跟踪算法。在每一时刻,根据目标的估计状态和挖掘的道路信息自适应地更新和改变运动模型集以能够选择更加有效的模型集,同时减少了模型数量,并且利用道路信息对目标的运动状态进行约束和限制。最后通过Monte Carlo仿真实验表明,基于文中所提出的算法在检测跟踪性能方面明显优于