论文部分内容阅读
ID3算法是数据挖掘中经典的分类算法。它往往选择取值较多的属性进行分裂训练集,而选取的这个属性并非是最优的。针对这一缺点,提出了一种改进的ID3算法。通过改进信息增益公式,选取最优的划分属性,对采集的数据进行分类处理,建立决策树,这样的决策树包括较少的分支,并且树的高度较低。改进后的算法结合模式匹配算法来检测是否有入侵行为发生。通过实验验证了该算法减少了误报率和漏报率,并且比修改前在速度上有所提高,空间消耗有所减少。