基于i-向量和PCA字典学习稀疏表示的说话人确认

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:PEIDAO
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
稀疏表示以其出色的分类性能成为说话人确认研究的热点,其中过完备字典的构建是关键,直接影响其性能。为了提高说话人确认系统的鲁棒性,同时解决稀疏表示过完备字典中存在噪声及信道干扰信息的问题,提出一种基于i-向量的主成分稀疏表示字典学习算法。该算法在高斯通用背景模型的基础上提取说话人的i-向量,并使用类内协方差归一化技术对i-向量进行信道补偿;根据信道补偿后的说话人i-向量的均值向量估计其信道偏移空间,在该空间采用主成分分析方法提取低维信道偏移主分量,用于重新计算说话人i-向量,从而达到进一步抑制i-向量中信道
其他文献
针对现有基于图的流行排序的显著目标检测研究算法对于背景先验假设过于理想导致其在复杂背景图像检测中效果较不佳的问题,提出一种基于仿射传播聚类和流行排序的改进算法。首
针对游戏客服场景中玩家领域化、口语化的提问方式,应用深度学习工具word2vec建立带有语义的词的向量表示,设计了一种利用词向量距离,结合同义词替换、权重、句子长度、词序等因
针对整体变分(TV)修复模型易受到梯度的影响而且常常会丢失图像细节信息的缺点,提出了一种基于曲率差分的自适应全变分去噪算法。在联合非线性各向异性扩散滤波器和冲击滤波器对
针对非常规突发事件应急决策集结问题,分析了集结过程中的冲突问题,构建了非常规突发事件应急决策集结框架,在集结过程中通过群体冲突程度指标修正决策偏好信息并提出一种改进的