履带行驶系统动载荷识别方法研究

来源 :太原科技大学 | 被引量 : 0次 | 上传用户:freshgrandpa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
履带行驶系统是连续采煤机(简称连采机)最基础的组成部分。由于履带行驶系统承受较大的冲击载荷以及处于复杂恶劣的工作环境,链板间销轴很容易断裂导致采煤工作中止,严重影响工作可靠性。因此,对履带行驶系统链板间动载荷的研究至关重要。针对履带行驶系统工作环境恶劣,载荷无法直接有效获取这一工程实际问题,提出了基于遗传神经网络的振动信号载荷识别方法和基于相似理论的动载荷估计方法。在基于遗传神经网络载荷识别方面,采用路试法实验采集了模型小车的5组振动加速度数据和单组应力载荷数据,探讨路面不平度频率和驱动轮啮频等对履带车振动和应力载荷的影响规律;借助快速傅里叶变换(FFT)对原始应力载荷数据进行去噪处理,为了提高载荷识别的精度,依据模型小车行驶平顺性指标,利用sym8小波基函数对采集的原始振动信号5层特征提取,然后将5组小波变换分解的加速度数据和滤波后的应力载荷数据分别作为GA-BP神经网络的输入和输出进行训练及验证,揭示了履带行驶系统运动过程中振动与应力载荷之间的关系。研究结果表明:路面不平度频率、驱动轮啮频及转频为小车振动的主要频率成分,路面不平度引起的振动频率为13.765Hz,驱动轮啮频为68.25Hz,转频为3.25Hz。多组试验得到的BP神经网络最佳隐含层神经元数为63,GA-BP神经网络识别的应力载荷与期望应力载荷具有较高吻合度,相对误差为4.5%,验证了该方法的有效性。在动力学仿真方面,在Solidworks中分别建立模型小车与连续采煤机履带行驶系统(简称原型实车)三维模型,导入Recurdyn中添加驱动、接触和约束等建立模型小车与原型实车的动力学仿真模型。为了得到驱动轮齿根处的应力和车体不同位置处的振动加速度,将驱动轮与车体在Ansys中柔性化,模型小车动力学仿真的准确性通过与实验对比来验证,原型实车动力学仿真的准确性通过理论行驶阻力矩与仿真得到的驱动力矩对比来验证。研究结果表明:模型小车与原型实车动力学模型准确性在允许误差之内,模型小车在平路稳定运行时振动加速度大部分在±2g之间波动,应力载荷主要分布在9k Pa以内,原型实车在平路行驶时应力在6.8MPa之内,越过凸起障碍时,应力峰值为15.4MPa。在基于相似理论的动载荷估计方面,利用实验获取模型小车振动加速度和应力载荷数据,探讨原型实车动载荷识别问题。基于相似准则建立模型小车与原型实车刚柔耦合动力学模型,确定了模型小车与原型实车之间的相似参数,阐明模型小车与原型实车的振动加速度及应力载荷变化规律。研究结果表明:小车动力学仿真得到的振动加速度及应力载荷幅值与模型小车试验结果吻合,原型实车动力学仿真得到的驱动力矩与理论行驶阻力矩接近。根据模型小车试验载荷与相似指标得到原型实车应力载荷为6.83MPa,原型实车动力学仿真得到应力载荷为8MPa,二者相对误差为14.6%,验证了履带行驶系统动载荷估计方法有效性。本文应用于履带行驶系统动载荷的研究降低了试验成本,对煤矿机械履带行驶系统的可靠性研究提供了较好的理论基础。
其他文献
随着散装物料搬运技术在理论和实际应用上的持续发展,带式输送机广泛运用于矿山、化工、港口、码头等众多领域,并具有长运距、高带速、大运量的发展趋势。但工程上的带式输送机经常会经过居民住宅、学校、医院等区域,产生的噪声较大,其中间段所产生的噪声为90d B甚至更高。而依据国家相关标准,居民区的噪声标准为55d B。过大的噪声不仅会对会对周边人员产生影响,并最终限制输送机向长距离、高带速方向的发展。托辊是
针对液压挖掘机进行挖掘作业时,所处环境复杂、恶劣,且作业任务繁重,使得操作人员的劳动强度大大增加,因此,很多研究者开始对智能挖掘机的自主挖掘进行研究。而在智能挖掘机自主挖掘的研究中,对挖掘轨迹进行规划是实现自主挖掘的基础,故本文针对液压挖掘机的轨迹规划方法进行了一系列研究。首先,采用机器人学中的分析理论,将液压挖掘机的工作装置D-H参数化,建立工作装置的数学模型,利用运动学理论,分别完成正、逆运动
滚切剪作为生产线钢板轧制的重要装备之一,是现在工业生产中不可缺少的核心设备,其作用主要用于钢板的剪切等。液压系统作为滚切剪中必备设备必须考虑其精准性。滚切剪在剪切过程中主要依靠的是左右两个液压缸,这两个液压缸以不同的速度进行动作,通过两个速度不同的液压缸带动连杆抬起、下落,从而形成合适的剪切角度对钢板进行剪切。在高压、大流量下滚切剪剪切钢板时会出现剪切轨迹无法精确跟踪,滚切剪剪切角变小会造成剪切力
外界扰动使得工程设备发生偏离平衡位置的往复运动,这种运动形式称为振动。在一定条件下,外界扰动引起的振动如不加以有效抑制或隔离,则可能影响工程设备的正常运行,严重时则可能致其失效,因此有害振动的有效抑制或隔离已成为工程设备研发中亟待解决的重要课题。近年来,通过对动物肢体结构以及运动形式的模仿,产生了一系列仿生隔振研究,研究表明仿生设计方法是一种新颖有效的隔振途径。本文通过对袋鼠躯体运动的剖析,从仿生
推轧工艺是一种短流程、高生产率、高成材率的管材轧制工艺,目前工业中常用的管材制备工艺在镁合金管材制备领域中存在诸多弊端,例如常规轧制工艺,其轧制流程过长,镁合金管材在轧制过程中温降较快,导致材料塑性下降,轧制过程难以进行;传统挤压工艺在制备薄壁型管材方面略显吃力;拉拔工艺生成效率低、模具损耗大,加工成本高。而推轧工艺具有短流程、高成材率、高生产率等优势。本文基于ZK60镁合金材料,利用推轧工艺制备
工业大数据环境下,受云中心计算能力和数据传输带宽的制约,降低了滚动轴承云平台在线检测系统的数据处理效率和实时性。针对这一问题,提出一种基于边缘计算的滚动轴承在线监测系统。该系统采用分层递进模式,将训练测试好的连续隐马尔科夫模型(Continuous Hidden Markov Model,CHMM)布置在边缘层,对滚动轴承的振动信号提取时/频域特征,用随机森林算法进行特征重要性评估,建立敏感特征集
碳点(Carbon dots)作为一种具有荧光性质的纳米材料,具有合成原料来源广泛、成本比较低、光学性能优异、生物相容性好、低毒性等众多优点,因此,应用在LED光电器件、金属离子检测、光学传感器、细胞标记等多个领域。然而,到目前为止,碳点仍旧面临多种问题:1.大多数高荧光量子效率的CDs发光多为短波长蓝、绿色,而发光如黄光、红光波段等位于长波长区域的高荧光量子效率的碳点比较少。2.固态碳点由于团聚
凸轮转子泵送系统主要由凸轮转子泵、三相异步电机、进出口管道、变频器等组成,可以输送各种高粘度、腐蚀性、含固态颗粒的介质,广泛应用于食品和饮料、制药、化学、纸浆和造纸等行业。凸轮转子泵流体输送系统具有非线性、强耦合等特点,且系统和各部分元件的模型很复杂,甚至难以获得解析解。在机电液变工况状态下,输出流量是衡量凸轮转子泵送系统排放性能的重要指标,其与泵本身的结构和工况参数紧密相关,如泵径向间隙(机)、
矿用特大型正铲液压挖掘机广泛应用于大型水利工程和露天矿山,由于其强大的物料搬运能力,实现了较高的工作效率和经济效益。一般矿用正铲液压挖掘机的作业对象为爆破后的矿山、岩石,在作业过程中负载变化复杂,对工作装置和液压系统具有较大冲击。而工作装置作为挖掘动作的直接执行机构,其动态特性的优劣将直接影响到整机能力的发挥。因此,本文以国际上主流矿用特大型正铲液压挖掘机中采用较多的普通挖掘装载装置作为研究对象,
煤岩截割过程极其复杂,截齿作为截割刀具在整个过程中扮演着主要角色,其自旋转性能的好坏直接影响着其耐磨性能。为了提高镐型截齿的自旋转性能,减少因偏磨造成的截齿失效,在结构上对镐型截齿进行优化分析。通过对镐型截齿齿体进行开槽处理,将镐型截齿分为普通、槽式、肋式三种形状参数。对这三种形状参数的镐型截齿分别进行截割煤岩与煤岩切屑的模拟仿真,以截割过程中镐型截齿所受切向力的大小以及割过程中颗粒流与截齿轴线的