钛微合金钢中纳米碳化物等温析出及其强化效果研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:blanknan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
钛微合金化高强钢得到广泛应用,主要是由于在低碳钢中添加少量的钛元素,起到了显著的强化效果。目前,已经对钛微合金钢的物理冶金学特征进行了较为系统的研究,但由于等温过程中同时发生过冷奥氏体相变和纳米碳化物析出,两者都会对钢材的屈服强度产生影响。为了阐明钛微合金钢中纳米碳化物的等温析出规律及其沉淀强化效果,将同样成分的低碳钢和含钛钢进行了对比实验。得到的主要结论如下:(1)利用等温压缩法对实验钢分别在600℃和700℃等温时的屈服强度变化规律进行了研究。相同工艺下的含钛钢屈服强度总是高于低碳钢,在同一温度下,随着等温时间的延长,两种实验钢的屈服强度先是快速上升到一定数值后趋于平缓;含钛钢在700℃等温中期的强度曲线先缓慢增长,在到达顶点后开始下降,反映出了沉淀强化效果的变化规律。700℃的等温促进了晶粒的长大,而在600℃进行等温更有利于含钛钢获得显著的沉淀强化效果。(2)采用等温淬火实验对实验钢的等温相变行为进行了研究,钛钢在600℃的等温工艺下,扩散速度小于700℃,相变时间持续较长,达300 s左右。600℃的等温相变过冷度较大,相变需要储能期,在相变中期(5-20 s)的相变速度才是最快的;700℃扩散速度快,相变前期(15-30 s)屈服强度增速快,相变速度较快;600℃等温相变过程中的组织变化比较复杂,出现了多种形态的铁素体,例如准多边形铁素体、针状铁素体等。而700℃相变过程中的基体组织大部分是多边形铁素体。(3)通过低碳钢与含钛钢的差值与维氏硬度分布规律分析发现,700℃的相间析出前期(15-30 s)屈服强度增加明显;相间析出中期(30-65 s)析出速度变缓,强化效果在等温65 s左右达到最好,沉淀强化效果为105 MPa;相间析出后期(65-120 s)析出量很少并且Ti C粒子会出现长大现象,不利于屈服强度增加。相间析出结束后的等温时间里会出现弥散析出,但是屈服强度增量较小。600℃的相间析出中期(5-20 s)析出速度快且量大,相间析出后期(20-300 s)元素扩散变缓,形核点基本饱和。相间析出结束后,在300-2000s内的等温过程中有弥散析出产生,并伴有可观的沉淀强化效果。等温析出强化效果在等温1000 s左右达到最优,贡献量为170 MPa。(4)钛微合金化高强钢中细晶强化和沉淀强化是两种主要的强化机制。钛钢在700℃等温65 s的工艺下比700℃未等温的工艺获得的屈服强度高,钛钢在600℃等温1000 s的工艺下比未等温的工艺获得的屈服强度高228 MPa。相同工艺下,含钛钢的屈服强度总是高于低碳钢,主要归因于钛钢等温过程中析出的Ti C产生的显著沉淀强化效果。等温相变会对析出行为产生显著的影响,含钛钢在600℃和700℃等温相变过程中,在中期之前都基本完成了相变与析出,600℃的工艺下析出更充分,归因于相变时间足够长,粒子形核点多,屈服强度显著增加;700℃等温工艺下析出更快,归因于相变时间短,后期粒子粗化使屈服强度下降。等温析出包括相间析出与弥散析出,在两种温度的相变过程中相间析出的快慢不同。
其他文献
智能汽车技术的发展极大降低了人为因素在交通事故中的影响,增强了汽车行驶的安全性。路径规划和跟踪控制技术是智能汽车技术的关键部分,逐渐成为科研单位以及社会企业的研究热点。智能汽车的路径规划主要考虑两个方面的问题,一方面是要求快速地规划出无障碍路径,以满足智能汽车及时避障的需求;另一方面是要求规划出曲率连续的最短路径,以满足车辆平稳行驶以及行驶时间最短。智能汽车的横向跟踪控制主要考虑在保证车辆行驶稳定
AlN单晶薄膜是一种重要的半导体材料,具有宽带隙、高击穿电压、耐高温、耐腐蚀的优良特性,是制备蓝紫光发光二极管、大功率电力电子器件的重要材料。MOCVD是制备AlN薄膜的主要方法,AlN-MOCVD的表面反应决定了薄膜生长的表面形貌、杂质组分和缺陷。其中C杂质在表面的引入,将在AlN晶体导带和价带间形成深能级,对载流子将造成复合作用,从而影响薄膜的光电特性;如果C杂质发生阳离子位(AlN晶体中Al
随着当今社会的飞速发展,无论工程技术问题还是物理问题都在不断的复杂化,从而导致越来越多的模型都需要通过分数阶微分方程或方程组进行描述。因此分数阶微积分成为了近年来研究的重要课题之一,并且得到了广大学者们的重视。但是分数阶微分方程大多数很难得到解析解,因此如何构造数值计算方法得到数值解就显得尤为重要。经过学者们的不懈努力构造出了多种分数阶微分方程的数值方法。常用的方法有:有限元法、配置法、有限差分法
AlN单晶薄膜是重要的第三代半导体材料,具有宽带隙、耐辐射、耐高温等特点,广泛用于制备半导体发光器件和功率器件。金属有机化学气相沉积(MOCVD)是AlN薄膜生长的关键技术。在AlN的MOCVD生长中,含Al前体Al(CH3)3(简写为TMAl)与含N前体NH3很容易发生气相预反应,导致生长速率低、薄膜质量差。AlN薄膜的生长速率和质量与气相反应路径有直接相关。本文针对三种主要的MOCVD反应器:
商用车一般存在乘坐舒适性差,道路破坏性强等缺点。空气弹簧的非线性刚度特性能有效降低悬架系统的固有频率,提高商用车的平顺性和道路友好性。同时,随着非线性隔振理论的深入研究,隔振器的减振性能得到进一步提升。基于此,本文根据现有空气悬架系统,结合非线性隔振理论,提出了一种新型准零刚度空气悬架结构。该结构通过双作用气缸实现负刚度,进而实现系统的准零刚度。由于正负刚度元件均为气动元件,其内部高压气体的气动过
空巢老人因自身生理功能下降,控制环境和应对环境中突发状况的能力减弱,空巢老人安全事件频频发生,关注空巢老人安全问题刻不容缓。有研究证明90%的安全事件是可以预防的,所以安全问题要以预防为主,从源头上阻断安全事件的发生,才是保证空巢老人安全的根本,而预防的主要手段之一就是增强空巢老人自身的安全意识。近年来,老年社会工作不断发展,以其专业的方法和技巧在老年服务领域中发挥重要作用。基于此,本文从社会工作
氧还原反应(ORR)作为影响燃料电池和金属空气电池能源转换效率的关键半反应,需要使用高负载量的铂碳(Pt/C)等贵金属基催化剂来降低反应所需的过电位,但Pt/C价格高昂,并且对CH3OH和CO的耐受性较差,因此急需研发成本低、活性高、稳定好的非贵金属催化剂。近年来,氮掺杂碳负载过渡金属催化剂被认为具有取代Pt/C的潜力。活性位点的密度和利用率是影响催化剂活性的关键因素。碳纳米管(CNTs)拥有良好
相对于传统轴流泵,环管轴流泵输送的介质为聚丙烯等复杂聚合物,一般不安装导叶或采用后置直导叶。由于环管轴流泵循环介质和结构的特殊性,其内部不稳定流动特性较强,运行中常出现轴功率波动大的现象。因此,掌握环管轴流泵内不稳定流动规律对于提高泵运行的可靠性具有重要意义。本文依托中石化课题“年产30万吨聚丙烯装置用大型石油化工轴流泵的研制”,通过理论计算对名义比转速为1000的环管轴流泵关键水力部件进行设计,
1420铝锂合金具有较高的比强度和刚度,较低的密度,高弹性模量及良好的耐蚀性,是目前商用最广泛的铝锂合金之一。采用喷射沉积法制备铝锂合金,可以有效降低铸造法生产中出现的成分偏析,同时细化晶粒。目前,关于1420铝锂合金的研究大部分集中在铸态组织上,对喷射沉积法制备的合金研究还较少,本文利用现代材料分析手段,通过SEM、OM、TEM、EBSD、XRD及力学性能测试手段,研究喷射沉积1420铝锂合金不
氢能因具有热值高、可持续和环境友好等一系列优点,受到广泛关注。但是,氢能是一种二次能源,氢气的应用需要依靠制氢技术和储氢技术。铝-水反应制氢因能够将氢气的制取与存储相结合,实现了按需制氢和实时制氢,在氢能领域受到关注。然而,铝表面极易形成一层致密的氧化膜,这层氧化膜成为了铝-水反应制氢的主要障碍。为了实现铝-水反应制取氢气,必须采取措施破坏铝表面的氧化膜。基于这个认识,本论文选择以铝和低熔点金属(