论文部分内容阅读
航空发动机是民机核心动力系统,对之实施有效的诊断和监控,是保障民机安全性、可靠性和经济性的重要技术途径。在发动机故障诊断研究领域,目标主体经常被抽象为一个典型复杂机械系统,由于该系统结构的复杂性、模型的严重非线性、诊断方法的多样性、测量综合误差对故障诊断的干扰影响等原因,造成了发动机故障诊断建模的复杂与困难。目前该领域研究热点包括诊断方法的有效性和全局性研究、诊断系统的实时性研究。前者旨在解决发动机故障诊断模型的性能问题,并将单一诊断方法的模型拓展为多诊断方法模型的集成应用。后者旨在将发动机故障的防范关口前移到实时节点,在传统航线检测、排查、航后排故的基础上引入基于智能诊断决策的故障预防和预防性维修。本文在研究地空数据链(ACARS)和机载飞行数据记录设备(DFDR/QAR)中发动机状态数据译码的基础上,围绕航空发动机故障智能诊断与状态监控中若干关键的问题展开研究,本文的主要研究内容和创新点如下:(1)ACARS所提供的实时信息量无法支撑发动机故障模型的在线训练和实时诊断,而快速存取记录器(QAR)中的数据,有信息完备和记录频率高的特点,因此,在基于智能算法的建模过程中,用ACARS与QAR数据共同构建样本空间。分析了两种数据源中数据帧结构可归类的特点,针对机载总线中发动机参数底层数据编码特征,提出了基于译码函数的发动机参数译码算法,译码过程具有较好的实时性和通用性,译码输出为发动机故障诊断和性能监控建模提供了基础数据支撑。(2)发动机系统的复杂性决定了故障诊断方法的多样性,对于诊断决策而言,综合多种方法做出的决策输出比单一诊断决策具有更好的全局性。对发动机诊断过程中设计的多路信息源和多种诊断知识分别进行融合,针对多路信息源采用数据层融合策略,提出一种自适应加权融合估计算法,根据发动机参数特征迭代调整加权因子,实现参数的融合输出;针对多种诊断知识采用决策级融合策略,提出了一种基于HWA算子的诊断知识多属性决策融合方法,实现了分布式局部决策知识向全局决策知识的进化(3)利用人工智能方法建立发动机故障诊断模型,可以突破传统数学理论建模、物理过程建模在处理非线性、非平稳性、不确定性复杂系统中的性能瓶颈,具有更好的逼近性能和泛化性能。针对所研究的故障诊断问题,提出了一种改进人工神经网络,利用蚁群算法优化了算法的初始权值向量的优化问题,避免了主观随机选择权值导致的收敛慢和训练振荡问题;模型的训练则引入Levenberg-Marquardt算法,利用其非线性寻优训练规则替代BP算法的梯度下降规则,减小训练过程中代价函数陷入局部极小点的机会,通过控制训练算法复杂度提高收敛速度。(4)发动机故障预防的要点在于性能的预测,从大量运行数据中捕获用于表征发动机深层运行状态及趋势的信息。研究基于发动机EGT裕度控制的气路性能监控,在分析试车台和起飞过程EGTM的计算原理的基础上,明确其衰退原因,给出了提高EGTM的建议措施;用智能网络模型逼近发动机气路参数时序函数,给出了一种引入了附加参数的相空间重构方法,用粗糙集方法控制附加参数冗余属性,提出了基于区分矩阵的启发式最小约简算法。建模阶段采用动量法和学习率自适应调整相结合的策略,对发动机气路参数的发展趋势进行建模和预测,取得了具有较好的学习和泛化能力,对气路参数或其他类似的非线性动力系统的走势预测决策具有较好的效果。(5)探索上述理论、方法的工程实现问题,通过在集成开发环境下构建了发动机故障诊断模块、气路性能监控模块、性能趋势预测模块,实现发动机故障诊断与性能监控原型系统,进行了工程实例测试应用。