论文部分内容阅读
气体分离膜技术具有低能耗、效率高、操作简单、易规模化和环境友好等的独特优势,在工业气体分离领域具有非常大的应用潜力。然而传统气体分离膜材料的气体渗透性能较低,不能满足日益增长的工业生产需求。开发高渗透率、高选择性的膜材料一直是现在化工分离领域的研究热点之一。自具微孔聚合物(PIMs)是近年来发展的一类具有高渗透率及中等选择性的聚合物材料,其对气体的高渗透率来源于刚性扭曲分子链的非有效折叠而产生的固有微孔结构。但其渗透率仍不能满足实际工业生产的要求,设计开发高性能的PIMs膜对膜分离技术的发展具有重大深远的意义。本篇论文以设计和构建高性能气体分离膜为研究内容,具体分为以下三个方面:(1)自具微孔聚合物材料PIM-1的合成。调研大量国内外有关PIM-1研究的文献,分别通过高低温方法制备出了良好的物理化学性质、高比表面积和可控的微孔结构的PIM-1聚合物材料,研究了其分子结构信息和热稳定性质,并讨论了高低温方法的优缺点,为后续的工作打下良好的基础。(2)基于后修饰的PIM-1的气体分离膜的聚合物通常具有高气体选择性但是具有相对低的气体渗透率。Freeman理论对设计PIMs提出了指导,理论指出适当增加聚合物分子链间距和分子结构的刚性,可以改善聚合物的气体分离性能。在这项工作中,金刚烷基团通过取代反应被接枝到偕胺肟官能化的PIM-1(AOPIM-1)主链上。金刚烷基团作为AOPIM-1骨架的侧基来调节AOPIM-1的链排布方式,从而影响膜的气体渗透性。该工作的结果表明,通过调节聚合物上接枝的金刚烷基团的摩尔分数,可以精细调节金刚烷接枝的AOPIM-1膜的链间距(d-spacing)。金刚烷基团接枝的AOPIM-1膜(9%)的CO2渗透率高达2500 barrer,比原AOPIM-1聚合物膜的CO2渗透率增加了150%以上,且其CO2/N2和CO2/CH4气体对理想选择性分别为31.2和30.1,表现了优异的CO2综合分离性能,远超过了CO2/N2和CO2/CH4气体对的2008年Robeson上限。在迄今为止报道的含有金刚烷基团的聚合物气体分离膜中,该工作中制备的金刚烷接枝的AOPIM-1聚合物膜表现出了最佳分离性能。该工作在天然气升级和碳捕获与封存等方面表现出了极大的应用潜力,也为基于PIMs的气体分离材料的后修饰提供了新颖的设计方案。(3)与纯聚合物膜相比,混合基质膜表现出了较高的丙烯/丙烷选择性,但基于膜分离技术的工业规模丙烯纯化项目仍受其低渗透率的限制。在这项工作中,通过将六氟硅酸锌(SIFSIX-3-Zn)纳米颗粒掺入自具微孔聚合物(PIM-1)基质中,开发了一种新的基于氟化金属有机骨架(MOF)的混合基质膜。具有高表面积和合适孔径的SIFSIX-3-Zn纳米颗粒可以产生新的输送通道以促进丙烯的传递。与纯聚合物膜相比,含有10wt%SIFSIX-3-Zn纳米粒子的混合基质膜的C3H6渗透率从1701.9 Barrer提高到4012.1 Barrer,同时C3H6/C3H8理想选择性从3.6增加到7.9,表现出最佳的分离性能,其分离数据位于Trade-off关系图的高渗透率区域并远高于Trade-off关系上限。这种新型氟化MOF基混合基质膜可能具有很大的工业C3H6/C3H8分离潜力。