高温喷焰辐射代理模型与发动机参数辨识

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:zql0913
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在高超声速及隐身技术飞速发展的背景下,基于高速飞行器火箭发动机喷焰辐射对目标进行探测、识别这一技术越来越受到重视。然而,火箭发动机喷焰辐射信号产生机制十分复杂,探测过程中信号传递环节众多,同时对于非合作目标,其发动机原型参数、飞行参数不完备,由此造成天基红外探测系统获取的喷焰辐射信号高度退化,难以通过探测信息实现对飞行目标的分类与识别。因此,通过对火箭发动机从原型参数到喷焰辐射信号的全链条仿真,研究从退化的探测信号辨识目标原型参数信息就显得十分重要,该研究可为参数不完备条件下火箭发动机型谱参数辨识提供理论与实践基础,也可为基于光辐射信号的目标分类、识别与诊断等提供新思路。本文以典型配方谱系下火箭发动机尾喷焰为研究对象,旨在从唯象角度构造喷焰红外光辐射信号特征表征体系,建立多要素关联喷焰辐射信号传递模型,并在此基础上,开展喷焰辐射信号不确定性分析与参数敏感度分析,明晰发动机型谱参数对喷焰辐射信号的影响机制与规律,继而通过提取典型喷焰光辐射特征进行发动机型谱参数辨识方法研究。本文主要研究工作如下:基于课题组开发的火箭发动机喷焰辐射信号分析工具,利用克里金模型、支持向量机、多项式混沌展开等代理模型方法建立了典型配方谱系下多要素关联喷焰辐射信号传递模型,结果表明多项式混沌展开法更适应于喷焰辐射计算问题,该方法可大量节省了计算成本。同时结合大气辐射传输软件构造了经大气衰减后的喷焰辐射信号传递模型,该模型具有较高预测精度。基于多项式混沌展开(PCE)建立多型号火箭发动机典型高度喷焰辐射信号代理模型,利用蒙特卡洛法与敏感度分析法结合Sobol指数对喷焰辐射信号生成/传递过程中的不确定性因素进行量化分析,明晰了火箭发动机型谱参数对喷焰辐射信号的影响机制与规律。通过提取火箭发动机喷焰辐射信号典型特征,采用代理模型反演学习法与改进支持向量机建立了以火箭发动机喷焰辐射信号典型特征为基础的参数辨识方法,结果表明该方法具有较高辨识精度;对喷焰辐射信号典型特征添加白噪声研究参数辨识方法的鲁棒性,发现噪声对火箭发动机参数辨识精度影响较大。
其他文献
CO2等温室气体大量排放已经导致了全球气候的变化,并成为全球最大的环境挑战之一,中国在国际社会上承诺加大碳减排行动的推动力度。新型富氧燃烧技术利用H2O代替常规空气燃烧中的N2,并辅以增压提升焦炭O2/H2O过程的燃烧效率,因此,能够实现高效碳捕集、规模化应用和对现有经济及产能结构冲击最小化,被认为是燃煤电站降低碳排放的有效途径。焦炭表面活性位数量的增加能有效降低反应能垒,加速O2/H2O燃烧反应
微型动力系统已经被广泛应用到生活的各个领域,尤其是在生物医学,航空航天等领域,未来的发展已经与微型动力系统的发展紧密联系在一起。微型燃烧器作为微型动力系统的核心部件,能否实现更加稳定燃烧已经成为当前主要关注点。微型燃烧器具有高能量密度的优势,极具发展前景,但受散热,“淬熄效应”等因素影响,火焰反应强度降低,甚至出现熄灭。为了更好促进微型燃烧器稳定高效运行,当前主要采用“超焓”燃烧技术和催化燃烧,加
霍尔推力器是国际上电推应用技术最成熟的电推进系统之一,由于近些年大力发展霍尔推力器,其工质氙气不仅面临资源减少,并且价格大幅提高,使得霍尔推力器成本随之上升。为了解决工质问题,特选取物理性质与氙气相近氪气作为替代工质。相较于氙工质,氪工质不仅储量丰富价格低廉,而且其理论比冲高于氙工质,但是其电离性能较差并且推力器热问题严重,尤其低功率更加重了这些问题,因此研究低功率氪工质霍尔推力器的充分电离优化及
近年来,随着超高速大排量叶轮机械的发展,对叶轮机械抗空化性能的需求逐渐提高。为了减小叶片的空化体积,抑制空化的发展,提高叶片的升阻力性能,通过研究发现海洋生物座头鲸的胸鳍前缘凸结具有良好的水动力特性及抗空化特性,因此选择与座头鲸胸鳍截面几何类似的NACA 634-021翼型进行数值模拟,阐明仿生翼型对空化流动的控制机理。本文的具体研究思路及结论如下:(1)首先通过大涡模拟方法对基础翼型和仿生翼型在
带电粒子(比如离子)与电场、流场、温度场等物理场之间的相互作用是导致电(热)对流现象的根本原因。电(热)对流蕴含丰富的物理内涵,但其本身问题复杂,求解困难且计算量大。本文采用介观的双松弛格子Boltzmann方法对介电液体电(热)对流进行模拟研究。首先,提出了一种可用于电(热)对流研究的优化LB方案,并结合数值模拟对优化前后的模型进行了对比分析。随后,利用CUDA平台的三维电热对流并行程序,研究了
旋转机械在我国工业发展的过程中占据着极其重要的地位,裂纹的出现会造成非常严重的生产事故以及财产损失。本文针对重型燃气轮机,分别研究其发生呼吸裂纹故障以及常开裂纹故障时的特征,确定其特征频率以及建立起设备故障诊断系统,用以预防大型事故具有非常重大的意义。根据重型燃气轮机的结构特点建立模型,运用余弦模型对于裂纹单元进行模拟,应用转子动力学有限元法以及Timoshenko梁理论建立转子系统,组装动力学方
目前,化石燃料仍为主要能源,但其存在环境污染严重,增加碳排放,几十年内消耗殆尽的问题,能源危机已成为世界性挑战。清洁新能源被认为是能源危机的有效解决方案,近年来太阳能光伏(PV)发电技术凭借着其环保及普遍等优点迅速发展,但其发电效率受工作温度影响,严重制约了发电性能,因此,PV冷却技术应运而生。为实现PV电池的高效热管理,本文提出一种基于相变材料(PCM)的被动式PV冷却技术,内外双肋片贯穿PCM
流化床中细颗粒在气相-固相和固相-固相反应过程中可以提供比传统材料更好的接触效率和更高的反应速率,近年来受到越来越多的关注。与粗颗粒不同的是,细颗粒的流化受到粘附作用的影响,在干燥环境下,颗粒间主要通过静电力和范德华力这两种粘附力彼此附着,形成松散的团聚体,影响颗粒流化状态和气泡尺寸、床层压降、床层高度等参数。两种粘附力的耦合作用是导致颗粒流化过程中颗粒团聚与复杂颗粒行为的主要原因。研究不同条件下
现代先进燃气轮机对功率和效率要求的进一步提升,使得燃气轮机部件热环境更加恶劣,因此亟待高性能的冷却技术出现。外部冷却(对流冷却、气膜冷却、发汗冷却)作为燃气轮机高温部件的重要冷却方式,因其良好的冷却性能被广泛应用在涡轮叶片表面。发汗冷却作为未来先进燃气轮机采用的更为有效的主动热防护冷却方式,结合气膜冷却方式的优点和多孔介质材料特性,均匀分散冷却流体出流,利用多孔介质较大的比表面积和内部体积提供充分
我国空间引力波探测对电推进提出了极高的性能和寿命需求,0.1μN的可调节精度和10000小时的使用寿命,要求必须严格控制外界干扰。该任务候选的电推进一般由离子加速器和阴极电子源构成,传统的空心阴极由于需要供气已经无法满足上述的控制要求,必须使用无工质的阴极。经过论证本文针对无工质热发射阴极开展相关研究,并重点从与推力器耦合的角度出发进行热电子发射阴极的设计与优化工作,主要内容如下:首先针对任务对电