非交换半群上的强遍历收敛定理及右可逆半群上的弱收敛定理

来源 :扬州大学 | 被引量 : 0次 | 上传用户:chezhenmen
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文第一章首先研究了自反Banach空间中,一般半群上的(Г)类渐近非扩张型半群的强遍历收敛定理,该章紧接着又证明了一般半群上的(Г)类渐近非扩张型半群的殆轨道的强遍历收敛定理;最后,进一步讨论了当G为右可逆半群时,上述定理条件中D上有不变平均的假设可以减弱为D上有一个左不变平均,此时定理如下:设X是自反Banach空间,C是X的非空有界凸闭子集,D是m(G)的含常值函数及关于左、右平移不变的子空间.该文第二章就针对这些局限性,通过采用新的证明方法,在具Frechet可微范数或满足Opial条件的自反Banach空间中证明了右可逆拓扑半群上的(Г)类渐近非扩张型半群及其殆轨道的弱收敛定理.
其他文献
本文我们主要做了两项工作,第一项工作研究了(n, m)-半群中的幂等元与方幂幂等元;第二项工作研究了一些半群类的广义Cayley图。具体如下:  1.我们在(n, m)-半群中引入方幂
该文主要目的在于研究二维轴对称活塞问题的激波解的存在性.高维轴对称活塞问题是研究守恒律方程组的一个重要物理模型.它是一维的活塞问题在高维情况下的推广.在文[6]中,作
近年来,图像处理技术的研究得到高速发展,与传统方法相比,现代图像处理方法是建立在对数字图像成像模型的认知上。同时,对非适定性问题的探索,以及正则化理论体系的逐步建立,尤其是
带有噪声的压缩感知信号重建模型可以表示为l1-范数问题,具有代表性的算法是凸优化算法.观测矩阵的选择是压缩感知理论的一个重要部分.为了能够用较少的观测值重构出精确的图
该文主要是研究L-拓扑空间的(强)完全正规分离性和L-Fuzzy代数中的若干代数结构.全文由两部分组成,第一部分是关于L-拓扑空间的完全正规分离性和强完全正规分离性的研究,第二
由于Lorentzian乘积空间Mn(c)×R1中的类空子流形在物理学研究方面,特别是在广义相对论研究中的重要应用,受文献启发,本文讨论Lorentzian乘积空间Mn(c)×R1中的PMC正常双调和
本学位论文运用时间映像分析法,研究了带一维p-Laplacian算子和一维平均曲率算子的两类微分方程边值问题解的存在性和多解性.主要工作有:  1.运用时间映像分析法讨论了带一