基于多肽自组装可控构建Au/淀粉样多肽纳米复合材料及其催化还原性能研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:lianxirenll520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
开发制备高效的催化剂能有效解决能源短缺与环境污染问题。负载型贵金属催化剂是目前的研究热点,贵金属具有低温高催化活性和重复利用率高的优点,但活性成分易发生聚集,而载体的存在能改善贵金属纳米粒子的分布状态并且提高催化剂的稳定性。然而传统的催化剂载体材料合成条件复杂,易引起环境问题和高能量消耗,催化活性并不理想。针对上述问题,本文主要开展了以淀粉样多肽作为生物模板来调控合成贵金属生物模板新型纳米催化剂及其在催化加氢反应中的研究。在本论文中,我们首先研究辉光放电处理对人胰岛淀粉样多肽(hIAPP)20-29(SNNFGAILSS)自组装结构的影响;再通过辉光放电法和硼氢化钠还原法制备出两种不同结构的Au/hIAPP20-29纳米复合材料;并应用于对硝基苯酚的催化加氢反应;为多肽模板法合成贵金属催化剂提供一定的指导意义与理论基础。具体的研究内容及成果如下:1.hIAPP20-29在水溶液中孵育6 h可从单体状态组装成成熟纤维结构,二级结构由原来的无规结构转变β-折叠结构。辉光放电处理后,hIAPP20-29自组装形貌以及二级结构发生显著差异。多肽经过孵育120 h最终自组装为均一的二维薄膜结构,高度为2.58±0.44 nm,二级结构为无规结构。结果表明辉光放电处理能够有效调控hIAPP20-29自组装结构,为后续功能材料的构建奠定基础。2.通过辉光放电处理hIAPP20-29与氯金酸混合溶液,一步法成功合成Au/hIAPP20-29膜复合材料。辉光放电还原的Au纳米颗粒均匀依附于多肽薄膜结构,Au颗粒的尺寸可控,主要由初始氯金酸溶度决定,初始氯金酸的溶度越低,合成的Au纳米颗粒尺寸越小。再以直接孵育得到的hIAPP20-29纤维为模板,通过硼氢化钠还原法成功制备出Au/hIAPP20-29纤维纳米复合材料。3.将Au/hIAPP20-29膜和Au/hIAPP20-29纤维催化对硝基苯酚反应。同在室温下放置24 h,多肽模板合成的催化剂催化活性远高于无模板催化剂。在20℃,75μM底物浓度条件下,Au/hIAPP20-29膜与Au/hIAPP20-29纤维的TOF可达95.13 h-1、74.71 h-1;反应速率常数为0.2172 min-1、0.1797 min-1。建立反应动力学方程,得到Au/hIAPP20-29膜与Au/hIAPP20-29纤维的活化能分别为26.09k J·mol-1、24.82 k J·mol-1,反应级数分别为0.44、0.66。结果表明hIAPP20-29是构建高活性催化剂的有效模板,两种不同结构的Au/hIAPP20-29催化剂均表现出高催化性能。二维膜结构催化剂表现出比一维纤维结构更高的催化转化频率与更低的反应能级,可见二维多肽膜结构在催化反应中更具优势。
其他文献
柔性轴承是谐波减速器的核心组成部件,其性能直接影响谐波减速器的使用寿命。作为柔性轴承的基础零件,轴承内圈在循环交变载荷中服役时易发生疲劳失效。本课题以轴承内圈为研究对象,通过理论分析、数值模拟、实验研究组合方法开展激光喷丸强化研究工作,探索激光喷丸强化机制及残余应力与宏观变形的控制方法,实现薄壁内圈零件的形性协同控制,为激光喷丸强化技术在轴承制造领域中的应用奠定基础。论文的要工作如下:(1)分析激
随着微纳结构加工技术的发展,通过激光加工使样品具有功能性的微纳结构表面逐渐成为大多数学者的研究热点。由于较高峰值功率的飞秒激光与材料相互作用的时间极短,所以,对飞秒激光诱导表面周期性条纹结构的调控以及对表面周期性条纹结构的超快动力学形成机制研究具有十分重要的实用价值和科学意义。本文首先从实验上采用能量比为1:1的双脉冲列对6H-SiC晶体进行线扫,研究了双脉冲延时和偏振方向对LIPSS(激光诱导周
太阳能光电催化分解水制氢技术作为解决能源危机和环境污染问题的最理想途径,其研究近年来备受各国研究人员的关注。在众多光电催化分解水材料中,氧化铁(α-Fe2O3)具有无毒、禁带宽度合适、物理化学性质稳定以及成本低等特点,被认为是一种理想的光电催化剂。但同时,氧化铁也存在着导电性差、光生电荷寿命短、载流子扩散路径短、析氧反应(Oxygen Evolution Reaction,OER)动力学速度慢的问
随着新能源电动汽车的普及与发展,大规格动力锂电池壳的需求明显增加。动力锂离子电池用铝板将成为铝加工产品中又一重要品种。目前,铝锰系铝合.金因.为其优.良的综合力学性能、良好的抗.腐蚀性和抗爆.破能力,被广泛的用于生产动力锂电池的外壳。铝锰系铝合.金在其他领域,如航空航天、汽车、电子等行业也被广泛应用。众多学者对3系Al-Mn合金已经做了大量的研究,主要集中在热处理对组织的影响、热处理和不同加工工艺
金属型铸造工艺,由于其模具使用寿命长、冷却速度快、且能使铸件晶粒细化和组织致密等优点,特别适用于诸如汽车铝合金发动机缸盖、汽车轮毂、扭力杆支架、转向节等大批量铸造产品的自动化生产。但在实际生产中,多循环多周期的铸造过程会使金属模具不断吸收铸件在充型凝固阶段释放的热量,导致模具温度不断升高,致使铸件凝固冷却的时间越来越长,最后影响铸件质量和生产节拍。因此,在满足产品质量和工艺出品率的基础上,必须设计
空蚀是流体机械中的常见现象,其导致流体机械运行效率下降,严重时会导致过流部件断裂。对于应用于海洋和船舶工程中的流体机械,腐蚀与空蚀的共同作用会使过流部件的破坏呈现复杂特征。目前对空化与空蚀的认识尚不充分,对腐蚀与空蚀联合作用的研究更是鲜见报道。探究腐蚀对金属材料空蚀的影响机制,分析运行工况对空蚀的影响,有助于补充空蚀理论,为抗空蚀流体机械的结构设计提供支撑。本文采用实验手段,对304不锈钢试样开展
AA6111合金具有密度小、中等强度、优异的耐腐蚀性能、抗疲劳性能和良好的成型加工性等一系列优点,是当前汽车工业使用最广泛的轻合金车身材料。但是,随着节能与新能源汽车的快速发展,在减轻汽车自重的条件下对其安全使用寿命提出了更高的要求,而常规AA6111合金已无法再满足汽车轻量化材料高强高韧、高模量的性能需求。近年来,国内外研究学者致力于通过稀土微合金化来进一步提高铝合金的强度,但单一的稀土强化效果
装配式建筑(Prefabricated Construction)一般在预制构件加工厂事先生产项目所需的构件,再将生产完成的构件送至现场进行安装。随着我国建筑工业化进程不断推进,装配式混凝土建筑发展迅速。对比传统的建筑模式,装配化的施工方式从资源消耗量、废物产生量、施工生产效率、文明施工、安全管理、保护环境等方面都具有明显优势。在我国绝大多数的装配式混凝土建筑其节点的连接方式都采用套筒灌浆连接,通
汽车时速超过60km/h时,轮胎噪声将会逐渐突出,并成为汽车行驶过程中驾驶室内噪声的主要来源,轮胎空腔共振是轮胎噪声产生的主要原因之一。当轮胎内部空腔的气体受到来自路面的激励力,产生了特定频段的共振,该共振通过车轴和车身等结构传递到驾驶室内,进而在车内形成低频噪声,该噪声称为轮胎空腔共振噪声,其存在严重影响汽车NVH特性。本文以乘用车205/55R16轮胎为研究对象,通过轮胎充入空气与氦气以及在内
奶酪作为一种营养丰富的冷链食品,易受单核细胞增生李斯特菌(Listeria monocytogenes)污染。为安全高效的防治奶酪中的单增李斯特菌,本研究引入柠檬醛这一天然活性抑菌物质,首先探究了其对单增李斯特菌的抑菌活性及机制。然后以羟丙基-β-环糊精(Hydroxypropyl-β-cyclodextrin,HP-β-CD)为壁材,以柠檬醛(Citral)为芯材,采用超声耦合冷冻干燥法制备柠檬