论文部分内容阅读
随着核能的发展,资源利用与环境安全的矛盾逐渐尖锐。通过材料学研究解决核电站运行中带来的放射性废物问题,缓解其对环境造成的压力,是一条非常有效的途径。中低放射性废物的水泥固化技术一直是放射性废物安全处置研究的热点,本文在总结前人研究成果的基础上,系统地讨论了模拟中低放射性废物对固化体性能的影响。基于模拟放射性废物,针对模拟中放固体废物(即模拟放射性废离子交换树脂)与模拟低放液体废物(即模拟放射性废液)进行了水泥固化技术的研究。采用新的实验设计方法,在满足国家标准GB14569.1-93要求的前提下,设计出具有“双效”作用的固化胶凝材料配合比及具体应用配方,并制定了较为完善的工艺流程,为优化中低放废物的水泥固化技术提供了理论与实际指导。依据基于伪蒙特卡洛理论的统计学实验设计方法—均匀设计法,开展了7因素28水平的实验设计研究。该设计以硅酸盐水泥为基础,配以促凝剂,双掺无机添加剂沸石和硅灰,通过优化工艺流程对模拟含硼放射性废树脂进行固化,最终获得了废树脂体积包容量不低于50%且符合国家标准GB14569.1-93参数要求的配方:三种配方中的模拟含硼废树脂体积包容量分别55%(S1)、60%(S2)和52%(S3),其固化体28d抗压强度分别为7.04MPa,7.62MPa和9.65MPa,并表现出良好的抗冲击、抗冻融与抗浸泡性能。S1与S3固化体标准试样中Sr2+的42天浸出率分别为8.89×10-4cm/d和9.92×10-5cm/d,S2在21天时浸出的Sr2+已经检测不到。S1、S2与S3试样Cs2+的42天浸出率分别为3.81×10-4cm/d、4.95×10-4cm/d和1.33×10-4cm/d。综合比较分析,推荐S2作为含硼放射性废树脂水泥固化的优选配方。同时,采用相同的固化胶凝材料配合比,在水灰比0.6的情况下,实现了对模拟含硼废液的有效固化,获得了L2与L3配方:其中,L2和L3模拟含硼废液水泥固化体28天抗压强度分别为16.53MPa和19.13MPa,凝结性能、抗冲击、抗水、抗冻融与耐辐照性能均符合国家标准GB14569.1-93的要求。L2和L3试样中Cs2+的42天浸出率分别为5.18×10-4cm/d和7.75×10-4cm/d,Sr2+的42天浸出率分别为7.39×10-6cm/d和5.28×10-6cm/d。经过综合比较,推荐L2为含硼放射性废液优先选择的水泥固化配方。以废液水泥固化浆体的流动性能,凝结性能,强度性能为基础,系统地研究了体系中原材料对模拟废液浆体性能的影响。采用XRD,SEM/EDS,IR等检测技术,探讨了原料对固化体微观结构与宏观性能的影响,分析了水泥的水化过程与水化产物,并解释了水化机理。通过对硼元素存在状态与形式的进一步研究发现,在固化过程中,废树脂上所吸附的硼元素,会大量带入水泥浆体中,与水泥的一次水化产物反应生成CaO·B2O3·6H2O和B-AFt,并延缓水泥颗粒的水化过程,硼元素以最终三配位的BO33-和四配位的BO45-两种状态存在。随着含硼浓度的增高,缓凝的作用会逐渐加强;随着水灰比的增大,也呈现相似规律。在0.3-0.5水灰比的范围内,当硼酸溶液浓度大于3%时,水泥硬化浆体中主要是未水化的水泥与大量CaO·B2O3·6H2O。由于骨架产物CSH与AFt急剧减少,以及生成的硼酸钙片状形态不利于强度的发展,造成了水泥凝结硬化的延迟和抗压强度的下降。研究结果表明:当模拟树脂的体积含量超过65%时,浸泡过程中将会引起固化体开裂。沸石与硅灰能够改善固化体的孔结构,有助于提高硬化浆体的致密性。配方中的促凝剂对水泥的促凝效果在一定程度上抵消了硼元素对水泥造成的缓凝作用,加速了水化的进程,提高了固化体的强度。