论文部分内容阅读
开发海洋装备关键部件用耐磨耐蚀材料是保障海洋装备安全可靠运行的关键。高熵合金(High-entropy Alloys,简称HEAs)涂层具有优良的耐磨耐蚀性,是极具发展潜力的海洋装备材料。本文以具有优良耐蚀性和低温性能的CoCrFeMnNi合金为基础,从提升涂层性能和降低成本角度出发,进行了系列成分设计优化;采用自主开发的等离子熔覆技术制备高熵合金涂层,重点研究了涂层的组织结构与演化机制、涂层的耐磨耐蚀性能以及磨损腐蚀机理,为海洋极端环境下耐磨蚀材料的开发提供理论和技术支持。(1)研究了 Ti元素对CoCrFeMnNi涂层组织结构和性能的影响。结果表明:随Ti含量增加,涂层的物相由单一 FCC相转变为FCC+BCC相,继而转变为FCC+BCC+Laves相。高熵合金涂层显著提高了 Q235基体的硬度、耐磨性及耐蚀性。随着Ti含量增加,硬度升高,但耐磨性呈先升后降的趋势。高Ti含量时,因涂层主相转变为BCC+Laves相,导致脆性增加,涂层磨损机理也由低Ti含量时的粘着磨损,转变为中Ti含量的轻微疲劳磨损,再转变为高Ti时的严重脆性疲劳磨损。由于非平衡等离子加热的“快速淬火效应”,使低Ti含量时涂层的耐蚀性优于文献中报道的304不锈钢和大多数块体高熵合金。(2)在CoCrFeMnNiTix体系基础上,以Cu和Ni分别替换Mn和Co元素,获得CuCrFeNi2Tix涂层,以期降低涂层脆性及成本。涂层物相随Ti含量增加由双相FCC相转变为FCC+BCC+η相,又转变为FCC+BCC+η+Laves相。相较于CoCrFeMnNiTix体系,由于元素替换,即使在高的Ti含量时,涂层也可获得致密组织且无裂纹,归因于高Ti含量涂层主相转变为兼具良好强韧性的FCC+Laves共晶相,有效抑制涂层的脆性,进而使涂层的硬度和耐磨性同步提高。涂层磨损机理由低Ti含量时的粘着磨损,转变为中、高Ti含量时的磨粒磨损。此外,少量Ti的添加有利于提升该体系涂层耐蚀性。(3)以CoCrFeMnNiTix和CuCrFeNi2Tix系涂层为基础,以避免涂层生成大片状金属间化合物,实现纳米析出相的沉淀强化为设计目的,在CoCrFeMnNi基础上,以Cu和A1分别替换Mn和Fe,并将Cu与A1的比例降至0.5,分别采用等离子熔覆和放电等离子烧结(SPS)制备了 CoCrAl0.5NiCu0.5高熵合金涂层。结果表明:CoCrAl0.5NiCu0.5涂层组织以固溶体和纳米析出相为主,无大块的金属间化合物。等离子熔覆涂层包含双相FCC相,其中枝晶FCC基体内弥散分布着尺度为~5 nm的富Cu沉淀相,而晶间FCC相内弥散分布着更细小的尺度为~1 nm L12沉淀相。由于Ll2纳米有序相的沉淀强化及固溶体内位错强化作用使得晶间区域的纳米硬度(7.01 GPa)高于枝晶区域(6.07 GPa)。SPS涂层包含两种FCC相和一种B2相,基体FCC相内包含多级纳米析出相。涂层显微硬度达455 HV0.1,高于文献中报道的绝大多数FCC基、甚至某些BCC基高熵合金的硬度,归因于晶内多级纳米相的沉淀强化作用。比较而言,等离子熔覆涂层的元素偏析较轻,故涂层耐蚀性比SPS涂层好。(4)对CoCrAl0.5NiCu0.5成分和配比作进一步优化,获得了 Cu0.5CrAlFeNiTix系涂层。不含Ti时,涂层组织由共晶团构成;引入Ti后,涂层组织由共晶转变为离异共晶:低Ti含量时,组织为初生相L21相+(L21+少量BCC)共晶,共晶体中的大部分BCC相残留于晶间区域。中、高Ti含量时的涂层组织形貌相似,初生相转变为BCC相,涂层组织为初生相BCC相+(L21+BCC)共晶。此外,在涂层的初生相、共晶体中还分布着多级纳米沉淀相。涂层的硬度随Ti含量的增加而提高,涂层耐磨抗力比CoCrFeMnNiTix和CuCrFeNi2 Tix体系涂层提高了一个数量级,分析其原因主要是BCC和有序B2/L21相形成的强韧配合的共晶组织,以及多级纳米析出相的沉淀强化作用。涂层的磨损机理由不含Ti时的磨粒磨损转变为含Ti时的轻微疲劳磨损。涂层耐蚀性随Ti含量的增加呈下降趋势,归因于Ti的加入使涂层主相转变为贫Cr的L21相。