【摘 要】
:
存算一体(Compute In-Memory,CIM)是解决传统冯诺依曼计算机架构性能与功耗瓶颈的一种有效方法,然而,存算一体在降低传统冯诺依曼架构数据传输造成的延时和功耗的同时对静态随机存取存储器(Static Random Access Memory,SRAM)等存储器的功耗的要求越来越高。降低SRAM功耗最为直接的方式是降低SRAM的电源电压。电源电压的降低虽然可以让SRAM的功耗呈平方倍数
论文部分内容阅读
存算一体(Compute In-Memory,CIM)是解决传统冯诺依曼计算机架构性能与功耗瓶颈的一种有效方法,然而,存算一体在降低传统冯诺依曼架构数据传输造成的延时和功耗的同时对静态随机存取存储器(Static Random Access Memory,SRAM)等存储器的功耗的要求越来越高。降低SRAM功耗最为直接的方式是降低SRAM的电源电压。电源电压的降低虽然可以让SRAM的功耗呈平方倍数降低,但是也会使SRAM的读写性能产生一定的损失。在外围电路中增加辅助电路结构是有效提高SRAM的读写性能的方法。然而,传统的辅助电路技术在提高读或写单一性能的同时会损失另一种性能,因此,结合多种辅助电路技术,并实现低功耗SRAM设计显得尤为重要。本文对低功耗SRAM设计进行以下两个方面研究。一方面,本文结合并优化了地线电压抬升和位线电压降低及位线电荷回收技术,并基于这两种技术重新设计SRAM的存储单元和读写分离结构的列选择器。该方法在SRAM写数据时将半选单元的位线泄露电荷回收用于驱动全选单元的地线电压抬升,提高全选单元写阈值;同时泄露电荷使半选单元的位线电压降低,提高半选单元的读静态噪声容限;另一方面,本文结合字线电压抬升和字线电压降低技术,提出新型两步控制字线电压辅助电路技术。该技术在SRAM读数据时将字线电压降低至欠驱电压,提高全选单元和半选单元的读静态噪声容限;而在SRAM写数据时将字线电压先升高至过驱电压后降低至欠驱电压,提高全选的写阈值并减少半选单元在字线电压抬升时造成的读静态噪声容限的损失。对本文设计的低功耗SRAM存储单元进行1000次蒙特卡洛仿真实验,实验结果表明,与传统结构相比,本设计的写阈值提升近33%,读静态噪声容限提升近6%,SRAM的最小工作电压从0.65V降低至0.5V。对本文的低功耗SRAM进行版图设计并进行后仿真验证,实验结果表明,相比于传统结构,在0.65V下,本设计的写时间降低10%,而在0.5V下,本设计的静态功耗和动态功耗相比于工作在0.65V时分别降低超过40%和30%。
其他文献
气敏材料的性质决定气敏传感器的性能。ZnSnO3是一种具有良好气敏性能的三元化合物半导体材料。但是,纯ZnSnO3气敏传感器的工作温度通常在200℃以上,这极大地限制了它的应用。因此,如何降低ZnSnO3气敏传感器的工作温度并使其具有良好的气敏性能,成为本领域研究的热点。通过ZnSn(OH)6高温脱水制备ZnSnO3,是获得这种敏感材料的途径之一,且其性能会受形貌和粒径等微结构的影响。在ZnSn(
嗅觉作为生物进化史上最古老的感官功能,与人类的记忆、学习和情绪等密切相关。大脑皮层是最高级的神经中枢,能够评估来自各器官的刺激。研究大脑对不同气味的识别能力在嗅觉功能障碍的评估与诊断、抑郁症等精神类疾病患者的情绪调控等方面具有重要的意义。近年来基于脑电(Electroencephalogram,EEG)信号的嗅觉研究逐渐受到各国学者的关注。现有的基于EEG信号的气味种类识别研究往往只采用单一特征,
封装界面连接层作为电子封装结构中的一个薄弱环节,经常受到电、热和机械等复杂载荷。连接层的疲劳被认为是功率模块封装结构的主要失效模式。鉴于纳米银焊膏具有熔点高(961℃)、热导率高、弹性模量低等特点,适用于高温大功率电子封装界面互连。本文提出了一种绝缘栅双极性晶体管(IGBT)模块的可靠性增强的优化封装方法。区别于目前主流商用封装策略,本课题采用电流辅助烧结纳米银焊膏作为芯片连接层,进而使用高熔点焊
纳米银焊膏凭借其优异的机械、热、电性能,以及简易的烧结工艺等特点,已成为功率半导体器件封装中极具前景的芯片互连材料。然而,银极易发生电化学迁移,导致电子元器件短路失效。随着宽禁带半导体在高温应用和高密度封装的发展,迁移的风险将大大增加。以往集中于常温湿气环境下改善银迁移的机制和方法将不再适用,这对高密度封装的可靠性提出了挑战。有研究学者提出向纳米银焊膏中添加钯粒子来改善银的电化学迁移行为,但其电化
Au/Ni/Cu是一种常用的PCB焊盘表面镀层。在回流焊接过程中,Au层迅速溶解于钎料,Ni层为焊盘与焊球实际的连接层,其厚度显著影响焊点内微观组织的形成及演化,进而影响焊点力学性能。本课题通过研究具有两种Ni镀层厚度(一组Ni镀层厚3μm,标记为S1;另一组Ni镀层厚6μm,标记为S2)的Sn3.0Ag0.5Cu/Au/Ni/Cu焊点的微观组织演化及力学性能,澄清了焊点中Au-Sn化合物及界面I
发音反演是根据语音信号反推发音器官运动的一种研究,在语言学习、康复指导等方面有着巨大应用价值。目前的发音反演研究只使用音频语音特征作为输入,不可避免地造成了一定的性能瓶颈。且近年来在反演框架方面也进展不多,以双向循环神经网络为主要方法。为了解决上述问题,本文提出一种新的基于辅助特征融合的网络(Auxiliary Feature Fusion Network,AFFN)来实现舌位的发音反演。本文主要
功率器件的小型化轻薄化设计使其体积不断缩小,模块内部能量密度成倍增加,巨大的热载荷容易引发热失效,进而导致器件可靠性降低影响其使用寿命。因此,越来越多功率器件抛弃传统的引线键合技术转而采用热阻更低,散热性能更好,机械可靠性更高的铜片夹扣键合技术。但由于器件内部不同材料的热膨胀系数失配,工作条件下的铜片夹扣键合封装仍面临着热应力值大的问题,急需对其进行改进以提高可靠性。本文以ANSYS有限元分析软件
常规电法勘探利用电流稳定以后的电位分布,进行实验探测。而在发射电极电压导通和关断瞬间还激发瞬变电磁场,其在所测量的区域内传播、反射,携带了所测量区域介质的电导率和界面信息。本文建立了电极激发和电位分布测量系统。用电压导通、关断、反向导通和反向关断方式激发电场,测量了64个接收电极的全波响应波形,记录了四个瞬态激发的响应过程。并用64个电极测量的瞬态响应波形,对包含铝块的模型进行了实验。用不同时刻测
本文针对近红外光谱无创血糖检测中的人机接口方法进行了研究,并对课题组自行研发的血糖检测系统的信号来源进行了分析,验证了系统提取血糖信号的能力。首先,通过生物组织结构分析和实验研究,分析了九个常见部位在近红外无创血糖检测中的适用性。从生物组织结构和稳定性角度分析,认为前臂、手背等部位较优。开展在体实验,对比了不同部位的光谱稳定时间、信噪比等。结果表明前臂伸侧、手腕背侧、手背为信噪比较高的位置,手背、
硬件木马作为集成电路安全领域的关键问题之一,其检测技术已成为研究的热点。电磁信息具有非接触、三维矢量、空间信息丰富等优点,已经成为硬件木马检测的主流方法。电磁侧信道分析平台是基于电磁信息检测方法的关键,然而目前大多是半自动化,难以重复定位,信息采集效率较低,无法应用到大批量集成电路安全可信验证中。为此,本论文设计了一个兼具自动化、高精密和高效率的电磁侧信道分析系统,为硬件木马检测提供平台支撑。本文