基于金属氧化物纳米酶的葡萄糖比色传感研究

来源 :青岛农业大学 | 被引量 : 0次 | 上传用户:edgeofsky
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纳米酶因其合成方法简单、成本低、稳定性高等优点,而被广泛用作天然酶的理想替代物。现在已报道的纳米酶通常只具有一种仿酶活性或多种非串联的仿酶活性。因此,在进行级联反应的过程中常常需要加入天然酶而无法实现无酶反应。此外,天然酶与纳米酶的最适反应pH差异较大。因此,纳米酶–天然酶的级联反应通常需要分步进行。因此,发展新型纳米材料、扩展纳米酶的种类已成为研究的热点。此外,生物模板法具有操作简单、成本低、形貌可控等优势,为纳米酶合成的研究提供新的方向。因此,本文基于蛋白质合成了新型纳米酶,实现了葡萄糖的快速、灵敏、一锅法比色检测。
  基于蛋白质合成具有串联酶活性的MnO2纳米片(MnO2 nanoflakes,MnO2 NFs)用于比色检测葡萄糖。通过改变实验条件得到形貌可控的MnO2NFs。此外,MnO2NFs不仅具有仿葡萄糖氧化酶活性,而且在相近的pH条件下具有双酶活性(仿葡萄糖氧化酶活性和仿过氧化物酶活性)。因此,提出了一种“串联纳米酶”(具有串联酶特性的纳米材料)的概念。此外,提出了一锅法无酶比色检测葡萄糖的策略,只在单纳米酶(MnO2 NFs)的催化作用下就可完成氧化葡萄糖和比色检测H2O2。由于邻位效应和原位反应,该方法具有灵敏度高、检测限低和检测时间短的优势。与传统的两步检测葡萄糖的方法相比,该策略的检测限低至1μM。合成的二维串联纳米酶扩展了纳米酶的种类,打破了传统的比色检测方法,实现了真正意义上的“一锅”和“无酶”检测。
  合成了纳米酶–GOx级联催化剂用于一锅法比色检测目标物。合成的Co3O4磁性纳米球(magnetic nanoparticles,MNPs)表面包裹一层蛋白质可进行进一步修饰。发现在Co3O4MNPs上固定化可以调节酶的pH依赖性,例如,葡萄糖氧化酶(glucose oxidase,GOx)和糖化酶(glucoamylase,GA)等。由于Co3O4MNPs的仿过氧化物酶活性与GOx催化活性的最适pH范围有重叠,因此,可以进行一锅法葡萄糖检测,该策略的检测范围广、选择性好。葡萄糖的检测限可以达到79μM,充分说明该策略的灵敏性。同时,为了证明该策略的通用性,将GOx和GA同时固定到Co3O4MNPs上得到GOx/GA-Co3O4复合纳米酶,实现了对可溶性淀粉的快速比色检测,基于此实验检测淀粉的检测限为86μM。此外,在磁场的作用下,可以将催化剂快速从反应体系中分离从而终止反应,并且实现了酶的循环利用。该工作为实现天然酶-纳米酶的一锅法级联催化提供新的思路。
其他文献
该文为一项省级科研课题的试验和研究的部分成果.通过12个抗压试件和26个抗剪试件的试验,测定了KP型烧结页岩粉煤灰多孔砖砌体的基本力学性能.通过6片KP型烧结页岩粉煤灰多孔砖墙片在低周反复荷载作用下的试验研究,分析了该种墙体的破坏特征有其变形性能、强度、刚度、延性和恢复力特性等抗震性能.在经典墙体抗剪理论的基础上,提出了这种墙体的抗剪承载力计算公式.其计算结果与试验结果吻合良好.最后,采用层剪切模
学位
本论文以FCC油浆脱固重组分(FCC-HC)为原料,采用直接热缩聚法、共碳化法、供氢改性法制备中间相沥青,考察了不同的工艺方法和工艺条件对中间相沥青结构和性质的影响,并通过偏光显微镜、元素分析、FT-IR、XRD等表征手段对中间相沥青进行分析,探讨中间相沥青的形成过程和作用机制。以FCC-HC为原料,直接热缩聚法制备中间相沥青,最佳的反应条件为反应温度440℃,反应时间10 h,压力2 MPa。在
学位
水性丙烯酸酯乳液由于其环境友好、低成本、优异的成膜性和易于结构调整而已广泛用于水性建筑涂料领域中。然而,普通水性丙烯酸酯在耐水性、耐化学性和耐热性方面仍存在缺点,不能满足建筑行业的需求。环氧树脂的结构决定了其优异的附着力、耐腐蚀性、热稳定性、机械强度以及较高的反应活性,使得其可用于对丙烯酸酯进行改性,以达到优势互补,并且环氧接枝改性保留了环氧基团的反应活性,在交联固化成膜时提高其交联密度,可使得涂
学位
本文主要分为WS2纳米片/石墨烯三维复合材料的制备并应用于超级电容器的正极材料和TiO2纳米膜涂覆于304不锈钢表面的腐蚀保护特性研究这两个独立的部分。  第一部分,本文所研究的超级电容器是作为新兴的、小型高储能的设备之一。我们以块状的直径为45um的鳞片石墨粉为原料,使用改性的Hummers法经过预氧化和强氧化过程使原料剥离为多缺陷、多孔道的三维氧化石墨;并通过绿色高温的还原法成功地去除在氧化过
电化学发光(Electrochemiluminescence,ECL)是通过电化学氧化还原反应引发的、简便、灵敏、强有力的分析检测技术。电化学发光因其低背景信号干扰、宽线性范围、高灵敏度、简单操作以及成本低等优点,受到越来越多科研工作者的广泛研究。本文研究合成了1种新型的具有优异ECL性能的纳米发光体,并基于金属有机框架材料(MOFs)构建了两个电化学发光免疫传感器,实现了对前列腺特异性抗原(PS
电化学发光(Electrochemiluminescence,ECL)分析技术由于其检测范围宽、灵敏度高、操作方便等优点,已经成为近几年较为热门的生物分析手段之一。本文利用氧化铟锡(ITO)导电玻璃作为生物免疫传感器基底,结合具有较大比表面积、高催化活性和高导电性的多功能金纳米花(Goldnanoflowers,AuNFs),设计了两种新型无酶ECL免疫传感策略,实现了对甲胎蛋白(AFP)、癌胚抗
由于储能机理的差异,双电层电容器和法拉第电容器各自都有优缺点,为了利用两者的优点,有效的办法是将二者结合起来做成混合电容器,以获得最好的电化学储能能力。本文先制备改性的PyS-RG,以改善石墨烯在水溶液中的分散性,接着通过高温水热法和热还原法制备出单元金属氧化物/石墨烯复合材料(NiO/RG和Co3O4/RG)。  为探究双元金属氧化物/石墨烯复合材料电化学性能,仍以改性的PyS-RG为原料,通过
学位
TiO2光催化降解有机污染物具有速度快,可持续分解中间产物,无二次污染等优势,是治理有机污染物的有效途径之一。由于纳米粉体在实际应用中难以回收利用,制约了其工业化进程。针对这一问题,本论文选用Nafion液作为封装材料,对TiO2基光催化剂实施封装。通过XRD、SEM、TEM、EDS、UV-vis等手段对合成材料的组成、形貌、结构和水接触角等进行表征分析,考察了光催化材料降解甲基橙的性能,探究纳米
乙烯和丙稀作为石油化工的重要产品,在精细化学品生产中起着举足轻重的作用。由于我国富煤、少油的能源结构,将“煤”取代“石油”生产高附加值的低碳烯烃已成为近年来研究的热点。由于SAPO-34分子筛具有良好的水热稳定性及优异的低碳烯烃择型选择性,已成为MTO/DTO工艺中应用最为广泛的催化剂。但是SAPO-34分子筛孔口小,反应过程中极易形成积炭,导致孔道发生堵塞,催化剂快速失活,降低了其使用寿命。针对
学位
TiO2表面缺陷位不仅可以作为催化反应的活性位点,在异质结构光催化剂体系构建过程中也同样起到至关重要的作用。本文利用TiO2表面氧空位和Ti3+独特的物理化学性质,分别构建了贵金属(Ru、Rh、Pd)/TiO2和半导体(BiOI)/TiO2两种异质结构体系。  在贵金属(Ru、Rh、Pd)/TiO2异质结构体系中,采用浸渍法,利用TiO2表面氧空位和Ti3+的还原性质,在TiO2表面沉积上尺寸均一