一类非线性投影方程解的存在性及扰动迭代算法

来源 :四川大学 | 被引量 : 0次 | 上传用户:bcde23141
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
众所周之,Hilbert空间中闭凸集上的变分不等式问题,可以转化为一个投影方程的求解问题.最近,Zhao和Sun引入并研究了一类非线性投影方程.该文的目的是讨论一类更广泛的非线性投影方程,这类问题包含许多经典变分不等式,隐拟变分不等式,广义隐拟变分不等式作为特例.我们讨论此类非线性投影方程的解的存在性,和求解此类方程的扰动迭代算法及其收敛性分析.
其他文献
学位
拓扑度理论是研究非线性问题的有力工具,利用它可以得到许多不动点定理.该文的目的是要把拓扑度理论推广到模糊数学领域,针对一类模糊映射建立模糊拓扑度.首先,该文提出模糊
近几十年来,由于在数论和奇异理论上应用的需要,计算n-维多面体的正整点数受到了数学家们的极大关注。设△(a1,…,an)表示n-维多面体x1/a1+…+xn/an≤1,x1≥0,…,xn≥0,其中a1≥…≥
块Davidson方法是求解对称矩阵特征值问题的一种有效的方法,由于块Davidson方法存储量大,通常在该方法中使用重新开始过程.该文主要研究了块Davidson方法的重新开始技术,提出
排序问题研究的是若干个任务要在一些机器上进行加工,如何安排机器和任务使得某些要求(目标函数)达到最优的问题.按处理机个数将排序问题分为:单机排序问题和多处理机排序问
设M,N是光滑闭流形,p:M→ N为纤维丛投射.该文研究当Nm为RP(2)×RP(2)×RP(2)时,哪些上协边类具有代表元M使得M具有N上的纤维丛表示.另外,当n=19,21时,还决定了满足下述条件
该文首先利用Baskakov-Kantorovich算子K(f,x)的导数引入新算子K(f,x):给出了这些新算子线性组合Kn,s(f,r,x)的点态逼近等价定理:利用上述结果证明了Baskakov-Kantorrovich算
该文利用2r阶Ditzian-Totik光滑模ω(f,t)讨论了Left-Bernstein-Durrmeyer拟插值算子M(f)对空间L[0,1](1≤p≤+∞)中函数在度量Lp下逼近的正逆定理.主要结果如下:定理1设f∈L