关于双向小波的一些研究

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:chris7520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文是对双向小波做了一些研究.自从前几年杨守志教授引入双向加细函数和双向小波之后,人们渐渐开始沿着这条道路进一步去探索,去研究.与传统意义上的小波相比,双向小波是其更为一般的情形,在实际应用中也拥有更强的灵活性.因而双向小波成为了一个热点研究对象,在小波分析的研究中备受关注.本文首先对于引入的a尺度正交双向加细函数和双向小波函数,运用双向多分辨分析,得到了a尺度正交双向小波分解与重构的Mallat算法,并给出了这种算法的矩阵表示及该种信号分解后能够完全重构的充要条件.其次,从多变量多小波的双向矩阵加细方程出发,利用酉扩张原则和矩阵值洛朗多项式的多项分解,给出了紧支撑多变量双向多小波的紧框架的构建方法和一个充分条件.论文的具体内容分为以下四章:第一章,绪论.简要介绍了小波分析的产生和发展及双向小波的产生和目前的研究现状.第二章,双向小波及多变量双向多小波.首先从a尺度双向加细方程出发,介绍了a尺度正交双向加细函数的定义,然后在此基础上给出了双向多分辨分析的定义,并进一步地给出a尺度正交双向小波的定义.此外,还利用双向矩阵加细方程介绍了紧支撑双向加细函数向量的定义,接着根据多变量函数Fourier变换的定义,推导了双向矩阵加细方程施行Fourier变换后的形式,最后还给出了多变量双向多分辨分析的定义及相应的多变量双向多小波.第三章,a尺度正交双向小波的Mallat算法.首先回顾了所给定的a尺度正交双向加细函数与正交双向小波及其双向多分辨分析理论,然后利用a尺度正交双向加细函数的正交性及它与小波函数之间的正交性,得到了a尺度正交双向小波分解与重构的Mallat算法,并给出了其矩阵表示,最后还分析出了该种信号分解后能够完全重构的充要条件,很好地推进了双向小波方面的研究.第四章,紧支撑多变量双向多小波的紧框架.在紧支撑多变量多小波的紧框架的构建基础上,结合双向矩阵加细方程,利用酉扩张原则和矩阵值洛朗多项式的多相分解,给出了紧支撑多变量双向多小波的紧框架的构建算法,并以定理的形式给出了构建紧支撑多变量双向多小波的紧框架的一个充分条件,从而丰富和发展了对双向多小波的紧框架方面的研究.
其他文献
本文主要研究了由具有一个参数紧支撑的博雷尔概率测度族构成的伯努利测度μλ(λ∈(0,1))的性质以及一类自仿测度的非谱性质.主要目标是针对给定的λ,考虑在L2(μλ)空间中的正交指数函数系的最大化与极大化;并且估计了特定数字集的正交指数函数的个数.本文的主要结果如下:(1)如果E(Γ)不是L2(μλ)空间的正交基,那么它有可能是L2(μλ)空间的最大正交系.通过对Γ和μλ零点的分析,利用数的8-进
众所周知,Sturm-Liouville问题起源于固体热传导模型,其应用广泛,主要应用于数学、物理学、地球气象学及其它自然科学理论分支,尤其是在量子力学中,它是描述微观粒子运动状态的基本数学手段.因此,一个多世纪以来,常微分算子谱与逆谱理论逐步成为数学和物理学界的一个重要的研究分支.特别地,逆谱问题的研究引起了数学家和物理学家的广泛关注,并取得了丰硕的理论成果.本文主要研究了三类Sturm-Lio
激光出现之后,非线性光学得到了更快发展。在介质中,飞秒,阿秒等超短脉冲激光引起的多种新的光学效应激发了许多研究者的兴趣。由于与非线性光学效应相关的领域较广泛,因此基于这方面的研究很有发展前途。目前,光与材料的相互作用成为了一个引人注目的研究话题。非线性效应的物理机制决定于光与样品的相互作用,本质上是基于量子系统内部的微观动力学行为的作用。非线性光学为研究控制材料的光学性质和提高激光的应用效率等方面
本文首先刻画了算子具有一致可逆性质的条件.然后,利用一致可逆性质定义了一个新谱集,通过该谱与其它谱集之间的关系给出了算子满足a-Weyl型定理及其变形的充要条件,另外,还讨论了它们之间的关系.本文共分三章:第一章利用M.Mbekhta介绍的两个子空间,给出了有界线性算子具有一致可逆性质的条件,之后,定义了与一致可逆性质有关的新的谱集,该谱集的谱映射定理得到了研究;最后根据所得的结论,研究了上三角算
本文主要研究了和谐对与伯努利卷积的性质两个内容.和谐对是Strichartz首次使用的术语,在谱自仿测度的研究中有重要的作用.Li,沈兴灿等研究了素数情况下和谐对与指数函数正交系的关系,沈兴灿文章中还介绍了素幂的情况,介绍了当|det(M)|=pa时,指数函数系E的正交性与和谐对的关系,减弱了文献[18]的相应定理的条件,重新证明了素幂情况下的相应定理,同时本文还讨论了和谐对与整自仿tile的关系
近年来算子代数的研究已经引起了很多学者的关注,并且算子代数映射保持问题也是一个活跃的研究领域.随着初等映射Jordan初等映射Jordan-triple初等映射等概念的引入,许多学者在算子代数上对这些映射的研究也取得了很大的成就.本文也是有关此类映射的研究,首先研究对称算子空间上Jordan初等映射的可加性.其次研究对称算子空间上Jordan-triple初等映射的可加性问题.全文共分三章,具体内
由于绝对零度的理想情况无法实现,材料中的原子将因热涨落而离开它们的布拉维格点,从而在材料中形成大量的点缺陷。它们的存在极大的影响了材料的力学特征、机械性能以及电磁等方面的特性。因此,研究材料中缺陷的特征和形成规律以及缺陷间的相互作用具有重要的现实意义。本文以B2型TaW有序合金和L10型CuAu有序合金为例,运用改进分析型嵌入原子法详细地研究了它们的物理性质。主要包括静态时合金的晶格常数、结合能、
谱测度的概念是P.E.T. Jorgensen和S. Pedersen在1998年首次提出的,是对谱集概念的一般推广.因而谱测度理论的研究也成为近些年来兴起的一个课题.Laba, Jorgensen, Hutchinson, Pedersen, Li等人对谱测度都进行了深入地研究,这些都给在自仿测度理论下建立傅立叶分析理论提供了依据.但是由于其涉及的知识面广,涵盖的内容多,许多问题仍没有得到解决.
某些非线性演化方程拥有很强的物理背景,值得我们去研究。出现在应用科学学科中的许多非线性偏微分方程存在守恒律。在当代非线性科学中,非线性方程的精确求解及其可积性质的研究成为广大研究者的两大重要研究课题。判断非线性微分方程可积的有效途径之一就是看其是否拥有无穷多个守恒律。守恒律(如能量守恒、质量守恒定律)历来是物理学中研究的中心课题。本文通过对微分方程守恒可积性理论的学习,借鉴专家学者的理论思想,对现
多巴胺是一种重要的神经递质,研究表明该神经递质与生物的许多生理活动密切相关,也与很多动物的发育和行为有关。多巴胺及多巴胺转运体与许多神经性疾病存在一定关联性。多巴胺生理功能的行使,受多巴胺受体调节,同时还受多巴胺转运体的调节,多巴胺转运体调控途径是其他调节方式不可替代的。本研究以拟黑多刺蚁为实验材料,采用RT-PCR和RACE方法克隆多巴胺转运体基因,采用荧光实时定量PCR方法初步探讨该基因在拟黑