论文部分内容阅读
本文研究的主要内容是代数曲线曲面间最短距离的细分算法,主要涉及点与代数曲线曲面之间的最短距离、代数曲线曲面间最短距离的研究。曲线曲面的最短距离问题在CAD/CAM中的干涉检测、机器人的碰撞检测与路径规划、触觉渲染、计算机仿真等领域都有非常广泛的应用,因此对其进行研究具有非常重要的意义。 本文在绪论部分简要地介绍了一些关于距离计算的研究背景和研究现状。第二章主要对区间算术的相关理论知识、四叉树数据结构以及八叉树数据结构进行基本介绍,然后介绍了一些计算最短距离的相关算法。第三章以区间算术和四叉树数据结构作为基础,提出了一种计算点到代数曲线最短距离的细分算法,作为补充,借助区间算术和解方程组的思想,提出了与之对应的改进算法,使计算效率有所提升。第四章借助于区间算术和八叉树数据结构,提出了一种计算点到代数曲面最短距离的细分算法,同样地,也提出了相应的改进算法。第五章利用区间算术和四叉树数据结构,在第三章的基础上,提出了一种计算两条代数曲线间最短距离的细分算法及对应的改进算法,计算速度有了较为明显的提升。第六章根据区间算术和八叉树数据结构,在第四章和第五章的基础上,提出了一种计算两张代数曲面间最短距离的细分算法。且在这几章中,提出的算法均与其它算法进行比较,可以看出提出的算法可以取得更好的精度,此外还可以得到相应结果的误差限,这是本文算法的优势。第七章主要是对本篇论文进行总结,同时给出了一些建议方便后续的研究。