论文部分内容阅读
电卡效应(Electrocaloric Effect,ECE)通常指的是在极性材料中,其内部极性电偶极子对外加电场激励响应,而发生的翻转、取向和重排等行为,由此引起材料系统中熵的变化,宏观上表现为材料绝热条件下的温度变化和等温条件下的熵变过程。随着制冷技术在医疗器械、冷冻储藏、冷冻运输、智能家居、特种器械、微型电子电路均热散热等现代制冷场景下需求的日益增长,为解决传统蒸汽压缩制冷方式在制冷效率、温室效应以及应用场景等方面的限制,研发一类新型、高效的全固态制冷技术以适应现代社会的需求已然成为亟待研究者解决的问题之一。电卡效应因其高达60%的相对制冷循环效率以及较于其他新兴制冷技术而言,更高的制冷量和较低的驱动门槛,成为取代的传统蒸汽压缩制冷技术的有效技术方案。而对于基于电卡效应的全固态制冷方式而言,目前的研究仍处于材料选择和优化阶段,如何设计一类具有高电卡响应、具有优异的热学特性和机械性能、且满足实际电卡制冷器件设计要求的电卡材料,成为当前新型电卡效应全固态制冷器件设计的核心问题。本工作中,将基于环境友好型无铅钛酸钡陶瓷材料体系,通过掺杂以及多层陶瓷结构设计,以满足实际制冷器件设计要求。一、通过ZrA+离子替位掺杂钛酸钡陶瓷钙钛矿ABO3晶格中B位Ti14+离子位置,优化调节钛酸钡陶瓷电学性能。Zr4+离子掺杂将减低材料体系铁电相与顺电相之间的转变温度,即材料居里点,通过掺杂可获得接近室温的居里温度区间,同时,Zr4+离子掺杂在一定程度上可使得钛酸钡由正常铁电体向弛豫铁电体转变,展宽相变窗口,获得更宽的器件操作温区。当Zr4+离子掺杂含量为5 mol%,温度在113℃处,施加3 MV/m外部电场,测得该体系最高绝热温变值△Tmax=2.4K,除此之外,同一成分中得到0.8 K·MV/m的电卡效应效率(|△T/△E|);二、通过Zr4+及Sr2+共同调控钛酸钡陶瓷体系电卡性能,Zr4+离子和Sr2+离子的掺杂均会诱导铁-顺电相转变点往低温方向移动,将钛酸钡高达120℃的居里温度点调整至室温区附近,约~10℃到~60℃之间;此外,由于Zr4+离子的掺杂在材料系统中削弱了相邻偶极的相关性,使铁电体体系一级相变特征消失而呈现介电弛豫特性,这正是此类材料更宽的实用温域的来源。Sr2+离子在钛酸钡钙钛矿相体结构中,替位掺杂A位离子处,有利于稳定四方相,并一定程度上降低了材料晶格对称性,增加宏畴占比,提高极化响应,从而提高电卡效应。(BaxSr1-x)(ZryTi1-y)O3块体陶瓷绝热温变(△T)值随着Sr2+离子掺杂含量的增加而增大,在50 kV/m的外加电场下,(Ba0.85Sr0.15)(Zr0.15Ti0.75)O3陶瓷中,获得相对的绝热温变△T为2.4 K,同时也将具有较宽的使用操作区间;三、为进一步提升陶瓷材料的电学性能,尽可能消除陶瓷材料由于氧空位等缺陷引起的漏电流和损耗,而降低材料电卡效应强度,将采用易变价的异价掺杂锰离子俘获和补偿陶瓷材料内氧空位所导致的自由电子和缺陷电荷中心,降低材料损耗,提高材料介电、铁电性能和电卡性能。通过调整不同含量的掺杂方案,本工作中提供了一种较低的介电损耗,在室温附近具有较宽的操作温度区间,且在低场下拥有优良的电卡响应的锰、锶、锆离子掺杂钛酸钡基陶瓷体系。并在(Ba0.6Sr0.4)(Mn0.001Ti0.995)O3陶瓷样品中,施加50 kV/cm的外加电场激励下,获得高达2.75 K的电卡响应;四、多层陶瓷结构由于去所具有的高耐击穿电场强度、优异的传导热和高温稳定等热学特性、良好设计灵活性等特点,使其在微电子器件均热散热场景下具有独一无二的优秀前景,然而其在商用电卡制冷器件中的设计应用及推广仍待进一步的发展。在此部分工作中,将集中解决开发多层陶瓷结构的基础工作,包括流延法制备陶瓷厚膜工艺的优化以及贱金属内电极多层陶瓷器件所需要面对的气氛烧结问题,并通过进一步的多层工艺初步得到10层Ba0.7Sr0.3TiO3陶瓷结构初期样品,并在电卡效应测试中耐电场强度最高为30MV/m(1500V)时,获得电卡响应为△T=2.49K。