【摘 要】
:
数字化、智慧化、绿色化的发展趋势对电源系统提出了高能效、小体积、高能量密度的刚性需求。氮化镓(GaN)材料以其禁带宽度大、临界击穿场强高、电子饱和速度高等优势成为比传统硅材料更适应未来功率半导体技术发展趋势的一种半导体材料。虽然经过二十多年的发展GaN基高电子迁移率晶体管(HEMT)功率器件已经实现初步的商业化,但是由于横向HEMT结构限制其仍然存在内部电场分布不均、阻断能力与理论极限相差较大的问
论文部分内容阅读
数字化、智慧化、绿色化的发展趋势对电源系统提出了高能效、小体积、高能量密度的刚性需求。氮化镓(GaN)材料以其禁带宽度大、临界击穿场强高、电子饱和速度高等优势成为比传统硅材料更适应未来功率半导体技术发展趋势的一种半导体材料。虽然经过二十多年的发展GaN基高电子迁移率晶体管(HEMT)功率器件已经实现初步的商业化,但是由于横向HEMT结构限制其仍然存在内部电场分布不均、阻断能力与理论极限相差较大的问题。针对当前GaN HEMT中存在的上述问题,本文提出了一种高性能GaN HEMT新结构,实现了一种不同于GaN横向器件中传统场板技术的新型电场调制方式,优化了器件内部电场分布并提高了器件的电压阻断能力。主要研究内容如下:(1)提出了一种具有P型GaN叉指的3D-RESURF GaN HEMT(3-Dimensional Reduced-Surface-Field GaN High Electron Mobility Transistor)结构。其特征在于:1、通过在传统GaN HEMT器件中引入P型GaN叉指结构实现电场调制作用。在漂移区处形成P型GaN—二维电子气(2DEG)构成的p-n结,并通过器件阻断耐压时该p-n结空间电荷区的耗尽与扩展在平行于栅宽的方向引入新的电场分量,改变原有电场方向使得漂移区电场分布更均匀。同时,利用该p-n结辅助耗尽2DEG,降低了器件泄漏电流,提高了器件单位漂移区长度耐压能力。通过仿真分析,新结构的引入使得栅极漏侧电场尖峰降低超过20%,并使器件击穿电压由340V提高至733V(提升约115%)。在实现与传统GaN HEMT结构相同的耐压能力与导通电阻时,新结构芯片面积仅为传统结构的58.1%。2、通过P型GaN叉指延伸至源极位置并与器件源极互联的方式提供了P型区域的空穴来源,以保证器件由阻断态转换至导通态的过程中耗尽区能实现快速恢复。(2)讨论器件Lp,Np,Tp,Wp等关键参数的变化与器件特性变化之间的关系,并提出器件结构参数设计及优化的策略。为了量化新结构带来的面积优势提出面积收益因子参数及其计算方式。(3)对新结构器件的工艺制备流程进行讨论与设计,论证了新结构器件的可实现性。
其他文献
红外焦平面探测器在军事(红外制导、夜视、伪装识别、激光雷达、目标搜索跟踪等)、农业、工业、医学等领域有着广泛的应用,无论何种应用都应该准确了解红外焦平面探测器的性能参数,而光谱响应是红外探测器的重要性能参数之一。红外探测器的光谱响应是指探测器对不同波长入射辐射的响应率,相对光谱响应决定了探测器的整体性能、应用方向以及系统灵敏度。因此,研究红外焦平面探测器的相对光谱响应具有重要意义。针对基于单色仪的
Axin作为骨架蛋白主要参与Wnt、JNK和TGF-β信号通路。已有的研究表明Axin需要寡聚化并被SUMO修饰后,结合MEKK1/4,进而激活MKK4/7导致JNK的激活。我们希望找到Axin-JNK信号通路的上游分子和下游分子,这对于深入理解Axin-JNK途径的生物学功能具有非常重要的意义。Eph受体和它的配体Ephrin在各种生物学过程例如细胞迁移、轴突生长和突触可塑中扮演重要的角色。我们
衍射光栅作为一种色散分光元件在光谱仪、激光器和航天等领域有着十分广泛的应用。而传统衍射光栅因其物理本质的局限无法同时满足高衍射效率和宽频段需求,并且其对于不同偏振态的入射光较为敏感。针对传统衍射光栅的缺点,本论文利用超表面设计了一个对入射光偏振不敏感的宽带反射式闪耀光栅。超表面是一种人为设计的,能够对电磁波响应的二维结构。通过对微纳单元结构的色散调控,超表面可以实现电磁波波束的任意控制。本文以中红
超连续谱产生(supercontinuum generation,SCG)是指超短脉冲经过线性和非线性效应后频谱发生极大展宽的现象。在不同波段内展宽的SCG可应用于不同领域,可见光波段的SCG能够提高医学成像的清晰度和实现频率的精准测量,C波段的SCG能够作为多波长光源实现TDM-WDM-TDM转换,中红外波段的SCG则在传感和光谱学探测中被广泛应用。随着光芯片的不断发展,基于光纤实现SCG的方式
高压集成电路被广泛的应用于AC/DC转化、高压栅驱动、LED照明驱动等领域,应用前景广泛。作为高压集成电路的核心开关器件,LDMOS(Lateral Double diffused MOSFET)需要兼具高击穿电压VB和低比导通电阻Ron,sp,表面场降低RESURF(Reduced Surface Field)技术是提高器件性能最简单有效的方法。更进一步的,SJ(Super Junction)超
面对如今流量负载的爆炸式增长,我们需要一种更高带宽的光电器件以处理更大的数据量,同时需要降低其成本。近红外波段是数据通信的重要波段,制备在此波段内具有高速、高效率的硅基光电探测器,是光通信技术发展的需求,也是实现光电探测器与其他信号处理模块单片集成的需要,对半导体行业的发展具有重要的意义。然而,传统的硅基光电二极管在近红外波段光吸收率较低,要获得较高量子效率就需要增加吸收层的厚度,这样会导致光生载
个人热管理是通过调节织物红外性能、热导率等方式来调节体表微环境温度,使其维持在舒适温度的方法。个人热管理器件由于其节能、轻便等优点,具有广泛的应用前景。本论文针对柔性可穿戴个人热管理器件的设计、制备和性能方面展开研究,主要内容如下:(1)红外反射/可见光吸收增强型的个人热管理器件。采用FDTD仿真软件构筑了CNT模型计算了不同间距与直径对CNT薄膜的红外反射率性能的影响,结果表明CNT膜的红外反射
物态方程(EOS)是研究材料力学和热力学性质的一项重要内容,一直是实验测量和理论计算的核心。随着第一原理计算方法的发展和计算能力的提高,从量子水平来理解材料的状态方程已成为EOS研究的重点。但由于无法计入组态熵的贡献,ab initio方法很难被直接用来计算合金或固溶体的EOS及相关性质。结合集团变分(CVM)和集团展开法(CEM),本文提出了合金EOS的自然形式:用CEM来精确地描述合金EOS的
横向绝缘栅双极型晶体管(Lateral Insulated Gate Bipolar Transistor,LIGBT)由于其驱动电路简单、电流能力强以及与集成电路工艺兼容性强等特点被广泛地应用在功率集成电路领域。逆导型LIGBT(Reverse Conducting LIGBT,RC-LIGBT)在其内部集成了一个反向并联的续流二极管(Free Wheeling Diode,FWD),因此具备了
随着现代飞机性能需求的不断增多以及制造业逐渐向智能化的方向发展,航空制造业也进入了一个新的发展阶段。但由于我国航空工业起步较晚,当前航空制造智能车间的数字化与信息化程度较低,对作业柔性与可拓展性考虑不足,车间内离散的制造资源和数据并未得到充分利用,设备利用率与整体生产效率不高。车间调度是整个制造系统的核心环节,优化生产调度流程,实现智能车间内作业有序、高效的执行,对缩短生产周期、提高生产效率、乃至