基于文本神经网络的恶意代码功能分类研究与应用

来源 :四川大学 | 被引量 : 0次 | 上传用户:qg101213
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,恶意代码分析一直都是中国网络安全领域研究的重要课题之一。其中高级可持续威胁攻击(Advanced Persistent Threat,APT)是一种特定的恶意代码入侵方式,它通过扫描探测系统漏洞,对靶机投放恶意漏洞利用脚本,再植入二进制恶意程序,达到感染主机的目的。研究恶意代码功能分类模型能进一步分析出恶意代码的功能行为信息,从而有效地提升APT防御技术,保护网络安全。但近年来分类恶意代码的特征选取缺乏自动化工具,且提取的数据特征无法全面描述恶意代码的语义行为,导致分类准确率低,代码可解释性差等问题。因此本文利用文本神经网络技术,从静态语义和动态行为两方面入手,针对漏洞利用源码与二进制恶意代码分别提出高效准确、功能级粒度的自动化分类方案。本文针对两种类型的恶意代码进行分析,主要研究工作与创新如下:(1)针对恶意漏洞利用源代码的研究中存在缺少自动化分析工具和代码难阅读的两个问题,提出了将代码词或词组看作单词和词组的概念,对其进行空间向量建模,构建了一种基于源代码语义的神经网络模型MSC-textCNN。实现源码的词义识别,做到无人工提取特征的预前过程,端到端分类恶意漏洞利用源代码的攻击功能。同时运用机器学习方法建立了恶意代码特征词库,能帮助源码分析者更快对源码做出行为解释。与几种机器学习方法相比,基于MSC-textCNN的方案在分类准确率上有3.08%到6.54%的提升。(2)考虑到静态特征无法表征恶意代码深层行为信息且容易出现信息错误,提出利用Windows系统调用(Application Programming Interface,API)序列监听二进制恶意代码的行为信息,组合卷积神经网络(Convolutional Neural Networks,CNN)与双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)结构,构建分类模型MB-textRCNN。该模型不仅捕获系统调用序列中N-Gram词组间的联系,还能保留动态行为在时序上的前后依赖关系,模型最终取得了98.66%的分类精度。经验证整体方案在公开数据集上依旧有良好分类表现,与其他组合方案相比,平均准确率模提高了5.49%至7.03%,分类性能更出色。综合两类型恶意代码语义特征的提取,实现了基于B/S架构的恶意代码分析可视化原型系统。该系统在提供文件管理功能的基础上,使用Echarts技术帮助分析人员直观高效地进行可视化信息获取,采用图表联动等多种响应式交互技术辅助分析人员挖掘二进制恶意代码动态行为信息。
其他文献
磁共振成像(Magnetic Resonance Imaging,MRI)技术因其非侵入性、非电离的成像方式,已经广泛地应用在物理、生物、医学等领域,尤其在病灶诊断方面的前景广阔。然而,由于磁共振独特的成像机制,磁共振扫描时间过长,容易产生运动伪影,从而影响重建质量和临床诊断。因此,减少磁共振成像时间具有重要的研究意义。目前深度学习技术与日俱进,在图像重建领域表现突出,因此基于深度学习的快速磁共振
生成对抗网络(Generative Adversarial Networks,GAN)是加拿大蒙特利尔大学的Ian Goodfellow等人在2014年提出的机器学习架构。自提出以来,便受到了深度学习领域研究人员的广泛研究,该架构在图像生成领域取得了巨大的成就。尽管图像生成模型取得了巨大的进步,但其仍然存在生成图像多样性不足、生成的高分辨率图像质量差、模型优化需要大量训练数据等问题。大量的研究人员
自动导引运输车(Automated Guided Vehicle,AGV)是一种移动轮式机器人,属于智能运输设备。AGV是目前无人工厂中的重要组成部分,可以取代人工完成搬运任务。随着制造业的发展和人工成本的提高,自动化流水线也需要相应的AGV调度系统来满足日益增长的任务需求。AGV可以实现物料的高效运输,降低生产成本,因此多AGV系统正在逐步推广。基于以上背景,提出对多AGV路径规划、任务调度和任
掌握自然语言是人类区别其他生物的独特智慧特征,古往今来人们从未停止过对其的研究,近年来GPT-2以及Bert等大规模预训练模型的横空出世,给予了自然语言生成领域内的研究空前的热度。自然语言的生成是有限制的,不同的文体抑或是在不同的语境下都有其独特的约束,于是受限文本生成也成了业内的一个必然要求。深度学习方法往往需要大量的相关数据,然而数据的整理是很繁琐的,并且小的数据量根本不足以使得神经网络拟合。
阿尔茨海默症(AD)的神经影像学自动诊断近年来引起大量关注,但至今尚未有较好的技术手段准确地诊断识别出相关疾病,由于图像识别技术的发展与突破,阿尔茨海默症图像诊断技术面临以下几个问题:(1)传统医学图像诊断技术需要人为提取图像特征,再使用机器学习分类算法,具有较强主观性;(2)AD患者脑部影像具有三维空间的特征,传统二维图像识别算法无法较好提取到大脑中的病理特征。本文针对以上问题,本研究由图像特征
随着无人机技术的不断进步,多无人机协同对地任务规划在现代战争中的地位日益凸显,其规划结果优劣将直接影响无人机整体作战效能。多无人机协同对地任务规划包含两阶段:第一阶段任务分配,即给无人机合理的指派任务;第二阶段航迹规划,即给无人机规划出能安全抵达对地任务目标点的可飞航迹。本文结合某无人机仿真平台的研究,对相关问题展开研究,主要工作内容如下:(1)针对传统合同网算法在解决多无人机任务分配中存在的资源
目标追踪作为现实意义较大的一个视觉算法研究板块,其中长时间的单目标追踪算法则是该板块一个十分重要方向,此前相关算法的解决方式主要以传统滤波为主,近年来,以深度学习为基础的长时间单目标追踪算法性能,正渐渐赶超传统滤波方法,尽管如此,目标追踪任务的难点始终没有得到很好的解决,其中以相似目标的追踪漂移、目标闪入和闪出视野内、目标运动模糊、目标视角和尺度随着追踪时间的不断变化等难点最为突出,进一步地,长时
近年来,基于探针的全局光照算法因其简单高效的特点被广泛应用于实时渲染应用中,如虚拟现实、游戏以及CAD辅助设计等。其基本思想是,通过在场景中离散放置探针对光照信息进行预计算,然后在运行时查询着色点附近若干个探针存储的光照信息进行插值计算而生成全局光照效果。然而,该类算法依赖于逐探针预计算光照信息,导致其难以实时响应动态光照变化。其中,光场探针算法能够生成高质量的间接漫反射和光泽反射效果,但需要逐探
随着科技的不断进步,人们的生活也开始步入智能时代。在交通出行方面,与我们最密切相关的就是辅助驾驶和自动驾驶技术。这些技术不仅能够提高我们的出行效率,也能够保障我们的出行安全。因此,对智能交通技术进行研究有着十分重要的意义和应用价值。在道路交通系统中,交通标志是重要的组成部分。不论是辅助驾驶还是自动驾驶,都必须要解决好交通标志检测的问题。但是在实际应用过程中,由于交通标志主要存在于室外,环境较为复杂
随着空中作战在现代战争中占据越来越重要的地位,空战决策方法的研究所具备的现实意义也显得尤为突出。由于空中作战态势复杂多变,如何快速感知战场环境并生成一种有利且准确有效的空战策略成为了空战博弈的重要研究方向。在空战决策方法的研究进程中,有诸如专家系统、影响图、矩阵博弈和微分对策等方法的研究进展,但此类传统方法存在适应性较差、计算复杂、难以满足实时性等问题。随着近年来深度强化学习技术的兴起与发展,其在