【摘 要】
:
镁合金与其它金属相比,具有许多优异的性能,但较差的耐蚀性能限制了其应用,这引起了许多材料科研领域工作者的极大兴趣,许多含有不同元素和具有表面膜的新型耐蚀镁合金也正被不断地开发出来。本论文从合金化的角度开发耐蚀镁合金,借鉴Mn元素的除杂作用以及考虑到合金中的不可避免的杂质Si,设计并熔炼出Mg-xMn合金和Mg-0.4Mn-0.011Fe-xSi合金,旨在深入地研究Mn和微量的Si对镁合金腐蚀性能的
论文部分内容阅读
镁合金与其它金属相比,具有许多优异的性能,但较差的耐蚀性能限制了其应用,这引起了许多材料科研领域工作者的极大兴趣,许多含有不同元素和具有表面膜的新型耐蚀镁合金也正被不断地开发出来。本论文从合金化的角度开发耐蚀镁合金,借鉴Mn元素的除杂作用以及考虑到合金中的不可避免的杂质Si,设计并熔炼出Mg-xMn合金和Mg-0.4Mn-0.011Fe-xSi合金,旨在深入地研究Mn和微量的Si对镁合金腐蚀性能的影响。采用扫描显微镜、透射显微镜、析氢失重实验、电化学测试和相图计算等方法深入地研究了Mn和微量Si对镁合金微观组织和腐蚀性能的影响,并将组织和性能联系起来,对合金的腐蚀行为和腐蚀机理进行分析和讨论,获得了以下实验结果:腐蚀性能测试表明,Mg-xMn(x=0、0.4、0.8、1.8、6wt%)合金在 3.5wt%的 NaCl溶液中的耐蚀性能与Mn含量有关。合金中的Mn元素能够改变第二相的成分,能够固溶合金中的杂质Fe,降低析出相与基体的电偶腐蚀作用,使合金耐腐蚀性能增强。Mg-0.4Mn-0.011Fe-xSi(x=0.01、0.02、0.04wt%)合金在 3.5wt%的 NaCl 溶液中的耐蚀性能与Si含量有关,合金中的Si元素会改变第二相的成分,进而增大第二相与基体的电位差,使合金耐腐蚀性能降低。通过对合金微观组织观察与分析发现,铸态纯Mg中的析出相主要为富铁颗粒,Mg-xMn(x=0.4、0.8、1.8、6 wt%)合金主要由 α-Mg 相和 Mn(Fe)相构成,析出相 Mn(Fe)的数量和尺寸随着Mn含量的增加而增加,析出相Mn(Fe)中固溶的Fe含量各不相同。随着 Si 含量的增加,Mg-0.4Mn-0.011Fe-xSi(x=0.01、0.02、0.04wt%)合金主要析出相由Mn(Fe)相转变为(Mn,Fe)Si相。通过对合金腐蚀过程的观察与分析发现,铸态纯Mg中的富铁颗粒有较强的支持析氢的能力,Mg-xMn(x=0.4、0.8、1.8、6wt%)合金中的Mn(Fe)相的支持析氢能力与固溶的Fe含量成正比,析出相Mn(Fe)中的Fe含量大于2wt%时,合金表面形成多孔的腐蚀产物,反之则形成致密的腐蚀产物抑制合金腐蚀。Mg-0.4Mn-0.011Fe-xSi(x=0.01、0.02、0.04 wt%)合金加入Si形成的(Mn,Fe)Si相有较强的阴极活性,而且随着Si含量的增加,合金中的(Mn,Fe)Si相数量增加,加速合金的腐蚀。
其他文献
超级电容器(SCs),具有充放电速度快、高功率密度以及长循环寿命等优势,被广泛应用于便携电子器件、可穿戴器件的储能单元。然而,较窄的工作电压范围和低能量密度成为限制SCs发展的瓶颈。开发纳米复合活性材料、优化电极结构,提高离子/电子扩散速率是提升SCs电化学性能的关键。本论文分别制备了非对称电极材料和复合材料电极的SCs,研究了电极材料组成和结构对储能器件性能的影响。主要研究内容包括以下三方面:(
旌蚧总科Orthezioidea隶属于半翅目Hemiptera胸喙亚目Sternorrhyncha蚧次目Coccomorpha,该总科为介壳虫中最古老、最原始的类群。文中综述了贵州旌蚧总科昆虫的分类研究概况,介绍了旌蚧总科的分类特征,并对该总科昆虫在贵州省的地理分布进行了研究。主要研究结果如下:1.分类研究文中共记述贵州旌蚧总科4科8属12种,含6新种(已发表1新种),2贵州新纪录科,5贵州新纪录
铁锗碲(Fe3GeTe2)是一种新型的层状铁磁性金属材料,具有矫顽场大,剩磁比高,居里温度接近室温等优异的磁学性能,所以二维Fe3GeTe2在发展高密度低功耗的自旋电子器件应用中具有巨大潜力。近年来,实验研究发现Fe3GeTe2的磁性具有显著的低维效应。当Fe3GeTe2的厚度减薄至单层时,居里温度仅为130 K,限制了二维Fe3GeTe2在实际自旋电子学应用中的发展。那么如何提升二维Fe3GeT
随着传统化石能源日益枯竭,新能源产业在世界范围内得到大力发展,而如何实现能源高效的存储与利用是当下面临的首要问题,发展更高效的储能技术迫在眉睫。锂-空气电池(Lithium-air batteries,LABs)因其具有超高的比容量,成为当前储能技术研究的热点。然而目前锂-空气电池仍然存在充放电过电势较高、循环稳定性较差等问题而制约其实际应用。阴极作为锂-空气电池中放电和充电过程进行的主要场所,选
LED显示屏作为资源信息发布的重要媒介,广泛应用于交通、商业、广告、金融等领域。显示屏设备的集中管理系统由C/S(客户端/服务端)架构、局域网管理模式向B/S(浏览器/服务端)架构、互联网管理模式转变。随着网点数量、设备规模的增加,需要设计开发一款LED显示屏集中管理Web平台,有效解决在设备使用高峰期吉(千兆)比特级上行数据量的吞吐瓶颈和数据库读写压力大的工程问题。针对上述问题综合研究并分析现有
铝铁合金作为一种具有耐热、耐磨、抗腐蚀等优良特性的合金,在许多工业领域具有广阔的应用价值。但目前常规熔铸制备的铝铁合金中Al3Fe相形貌粗大,严重割裂了基体,导致铝铁合金的力学性能较差,限制了铝铁合金的广泛应用。本文以连续流变挤压成形制备的Al-3Fe(wt.%)合金为研究对象,对Al-3Fe(wt.%)合金进行轧制变形与热处理,研究了冷轧变形与热处理对Al-3Fe(wt.%)合金的组织及性能的影
钢绞线作为桥梁缆索的主要承载构件,其疲劳损伤会导致缆索失效,造成不可估量的损失。目前对钢绞线缺陷的检测大多集中在宏观缺陷,对疲劳损伤等微观缺陷研究较少。本论文采用磁致伸缩导波检测技术对钢绞线疲劳寿命检测方法进行研究,有望为后续桥梁缆索的疲劳寿命检测及评估提供支持。首先,基于半解析有限元理论,研究了疲劳磨损钢绞线导波传播特性。分析了疲劳磨损钢绞线的结构特点,将钢绞线疲劳磨损过程对应到中心钢丝和外围钢
磁制冷技术作为一种高效节能、绿色环保的制冷技术引起了人们的普遍关注、被认为是最具有希望替代传统气体压缩制冷的方法之一。磁制冷技术的核心是磁制冷材料,探索具有大磁热效应的材料非常重要,这些材料可以在不同的温度范围内工作,工作温度在室温附近的磁制冷材料尤为受到研究者的重视。其中,La(Fe,Si)13基合金是最有希望的磁制冷材料之一,它们具有优异的磁性和相对便宜的价格,无毒的组成元素。La(Fe,Si
颗粒增强铝基复合材料拥有高强度、高模量、抗疲劳与耐热耐磨等优点,在航空、航天、汽车、电子等工程技术领域得到了广泛应用,极具发展潜力。在颗粒增强铝基复合材料的几种主要制备方法中,半固态搅拌铸造法与其他工艺相比具有设备廉价,工艺简单,适用于大规模工业化生产的优点,但也存在难以分散增强体颗粒的缺点。所以本实验引入机械振动来促进增强体颗粒分散,采取半固态搅拌-振动耦合工艺复合B4C增强颗粒与Al-1.4M
5083铝合金为Al-Mg系合金,该合金的密度小,抗拉强度高,耐蚀性好,广泛应用于海洋领域。但是由于Al-Mg合金固溶时效过程中的析出相强化效果差,所以Al-Mg合金热处理不可强化,因此大大限制了合金的强度。本试验通过在5083铝合金中加入不同含量的Ag元素,合金经熔铸、均匀化处理、轧制变形及固溶时效处理,通过对比不同Ag含量的5083铝合金时效后的硬度及合金在不同时效温度及时间下的硬度变化曲线,