论文部分内容阅读
与传统的固体激光器相比,光纤激光器具有更好的光束质量、更高的转换效率、整体结构紧凑并且方便热控管理,已在光通信、光传感、工业加工、激光医疗、航空航天和激光武器等领域具有广泛的应用。超荧光光纤光源作为宽带光源,因其温度稳定性好、输出功率高和光谱谱线宽等优势,比超发光二极管(SLD)具有更好的空间相干性和低的时间相干性,被广泛应用在光纤陀螺仪、光学层析成像、拉曼激光器光源以及某些信号处理系统中。本文基于掺镱光纤,从理论和实验两方面,对掺镱双包层光纤激光器和掺镱超荧光光纤光源进行了深入的研究,设计并实现了输出波长为1018nm的掺镱双包层光纤激光器,并以此作为泵浦源,首次实现了同带纤芯泵浦下的超荧光光纤光源输出,为今后超荧光光纤光源的研制提供了新的思路。论文完成的主要工作如下:第一,结合掺镱光纤激光器的工作原理与光功率传输方程,在给定的光纤参数下,利用Matlab仿真了泵浦光波长、泵浦方式、光纤长度和谐振腔后腔镜反射率分布对光纤激光的输出功率的影响。第二,结合掺镱超荧光光纤光源的工作原理与功率传输方程,给出了产生寄生振荡的阈值条件。利用RP Fiber Power仿真了不同泵浦方式、光纤长度对超荧光输出功率及光谱的影响,并就光纤端面反射率对SFS的影响进行了分析。第三,利用实验室现有条件,将波长为976nm的半导体二极管作为泵浦源,设计并实现了输出波长为1018nm的掺镱双包层光纤激光器。当泵浦光功率为22.6W时,光纤激光器的最大连续输出功率为13.9W,输出波长为1018.08nm,3dB带宽为0.30nm。1018nm光纤激光器的搭建,为实现同带泵浦的超荧光光纤光源提供了可能性。第四,以1018nm光纤激光器作为泵浦源,采用纤芯泵浦方式,搭建了单程前向结构的超荧光光纤光源,首次实现了基于同带泵浦的宽带掺镱超荧光光纤光源输出。通过实验验证了不同泵浦功率和光纤长度对ASE输出功率及光谱的影响。另外作为对比,本论文采用包层泵浦方式,实现了泵源波长为976nm的超荧光光纤光源。研究了正向泵浦时,单程双向输出超荧光光源的特性,讨论了不同长度掺镱光纤对超荧光光源性能的影响。通过实验对比证明,同带泵浦方式产生的正向ASE斜率效率要高于包层泵浦方式产生的正、反向ASE,说明同带泵浦确实具有更高的量子效率,能在较短光纤长度的条件下实现较宽的ASE光谱输出。