【摘 要】
:
DNA去甲基化在Epstein-Barr virus (EBV)潜伏感染激活到裂解感染过程中起到至关重要的作用。但是,对于细胞如何响应外界刺激应答而起始表观遗传修饰的改变(特别是DNA去甲基化),到目前为止还不是很清楚。我们的研究发现,Erk/c-Jun信号通路是佛波酯(TPA)诱导EB病毒立即早期基因Zta启动子DNA主动去甲基化所必需的。Erk信号通路特异性抑制剂U0126可以显著抑制TPA诱
论文部分内容阅读
DNA去甲基化在Epstein-Barr virus (EBV)潜伏感染激活到裂解感染过程中起到至关重要的作用。但是,对于细胞如何响应外界刺激应答而起始表观遗传修饰的改变(特别是DNA去甲基化),到目前为止还不是很清楚。我们的研究发现,Erk/c-Jun信号通路是佛波酯(TPA)诱导EB病毒立即早期基因Zta启动子DNA主动去甲基化所必需的。Erk信号通路特异性抑制剂U0126可以显著抑制TPA诱导的DNA去甲基化。进一步研究发现,c-Jun的磷酸化激活在TPA诱导Zta表达过程中发挥重要作用;敲低c-Jun表达能显著抑制TPA诱导的Zta启动子去甲基化。对于转录因子c-Jun是如何发挥DNA去甲基化功能这一问题,我们进行了深入探索。通过酵母双杂交、GST Pulldown、免疫共沉淀(Co-IP)、免疫荧光实验证实c-Jun可以和DNA羟甲基化酶Tet1在细胞核内相互作用;通过染色质免疫共沉淀(ChIP)实验发现,c-Jun招募Tetl到Zta基因启动子上,并且Tetl与启动子的结合依赖于c-Jun。Tet1结合到Zta启动子后通过氧化甲基化胞嘧啶(5mC)成羟甲基化胞嘧啶(5hmC)的方式实现Zta启动子的去甲基化。干扰Tetl的表达会抑制TPA诱导的DNA去甲基化及Zta的表达。总之,TPA激活Erk/c-Jun信号通路,招募Tetl到Zta启动子上,起始DNA去甲基化,促进EBV立早基因Zta的表达,进而诱导EBV裂解早期基因(如BHRF1)、裂解晚期基因(如gp350/220)的表达、病毒复制,最终导致EB病毒的激活。本研究揭示了Erk/c-Jun信号通路和Tet1在调节表观遗传修饰改变中发挥的重要作用,为理解EB病毒潜伏激活的精确分子机制提供了新的认识。
其他文献
纤维素作为自然界中普遍存在的生物质资源,具有可再生、生物相容性和生物降解等性质,引起广泛的关注。纤维素基材料独特的多级结构和优良的性能,在柔性电子器件、生物平台和储能材料等领域具有巨大的应用前景。通过“绿色”溶剂——碱/尿素水溶液溶解纤维素制备的再生纤维素材料,不仅制备过程环境友好而且还避免了有毒化学物质的使用,在天然高分子和材料等领域显示出巨大应用潜力。通过该方法制备的再生纤维素材料具有不同的结
颗粒材料是颗粒与孔隙组成的集合体,在应变局部化现象中颗粒位移具有强烈的非连续性和非线性,颗粒样本材料点的应力大小不仅与该点的应变大小和加载历史有关,而且会受到高阶变形梯度的影响。因此,本文基于离散元方法,研究了二维模型颗粒材料的变形梯度效应,从宏观应力、能量和三阶应力不变量的演化等方面分析了一阶剪切应变梯度和一阶转动梯度对线性接触模型和自定义抗转动接触模型的颗粒样本力学行为的影响,本文主要研究内容
表面等离激元是一种光激发下材料表面的自由电子集体振荡效应。自上个世纪六十年代发现表面等离激元现象以来相关的研究已经逐渐成熟。表面等离激元具有很多特殊的性质,可以将光局域在很小的空间尺度之内,形成很强的电磁场增强效应。表面等离激元也可以通过对入射光的频率选择效应来调制远场的光学响应。这些性质使表面等离激元成为了微纳光学中非常重要的组成部分。而近年来随着研究人员的深入探索,表面等离激元已不只是局限于微
双曲方程是非线性偏微分方程研究领域的重要研究内容.带有粘弹性项和阻尼项的非线性双曲方程在材料学、物理学、工程学等应用学科中具有广泛的应用.对它的研究必将促进非线性理论与其它学科的进一步发展.本文主要对几类非线性双曲方程(组)解的局部存在,整体存在,衰减和有限时间内爆破的性质进行了研究.第一章,我们介绍了双曲方程解的衰减性与爆破性研究的历史与现状及本文的主要工作.第二章,我们介绍了在论文中用到的函数
通过自组装的方法将小分子有序的排布到金属有机框架(MOFs)或共价有机框架(COFs)等晶态材料的结构中是当前材料科学的重要研究领域。其中COFs材料是有机小分子通过可逆的共价键连接得到的晶态材料。COFs材料在催化、气体吸附、识别与分离等领域有重要的应用价值,这些应用主要是通过充分利用COF的分子学特性来实现的。然而COF的晶体学特性,例如长程有序的特点,与材料性能之间的构效关系却很少被发掘,而
在二十世纪八十年代,整数量子霍尔效应和分数量子霍尔效应的发现打开了探索凝聚态物质奇异性质的大门。拓扑序的重要性被人们认识到,并开始利用它来描述一大类物质的量子态。拓扑绝缘体是拓扑序在凝聚态物理中的胜利,近些年来成为了物理学研究的一大热点。它有着拓扑保护的边缘态,对于各种缺陷的干扰不敏感,在电子,光子,冷原子,机械波等系统中都有着广泛的研究。与此同时,声学体系中关于拓扑物理的相关研究也开始蓬勃发展。
分形维数的计算一直是分形几何中基本而又重要的问题之一.最新的一种分形维数是由Balka等人在2015年引入的拓扑Hausdorff维数(dimtH).这种维数是利用空间的拓扑基的边界的Hausdorff维数来定义的,是拓扑维数(dimt)和Hausdorff维数(dimH)的一种自然组合.本论文主要研究了一类称为分形方块的平面分形的拓扑Hausdorff维数的计算问题,并将计算结果应用于分形方块的
本文主要介绍和讨论了多尺度建模与计算中两类相容性问题,即不同模型区域之间的耦合相容性问题和同一区域多尺度模型中的模型相容性问题。针对模型相容性问题,我们研究了如何从微观原子模型出发,建立与宏观介质力学相容的应力计算方法。具体而言我们将讨论了以下两种微观应力模型:·基于有限温度Cauchy-Born法则的应力计算。在这一部分我们将针对复杂合金体系,从经典的Cauchy-Born法则出发推导出有限温度
近年,新型多功能复合材料的构建及其结构与性能之间的构效关系已引起广泛关注,并成为材料研究领域的热点。复合材料的独特优势在于它可以发挥各个组分的结构和性能特点,提供单一组分的材料难以具备的性能,从而拓宽材料应用范围,因此广泛应用于生物医用、新能源和环境保护等领域。面对不可再生化石资源的日益消耗以及非降解塑料引起的环境污染日益严重,可再生生物质资源展现出巨大的应用前景,尤其是基于天然高分子的研究与开发
作为法国当代最著名,被译介最广泛的作家之一,米歇尔·韦勒别克可谓是文坛学界中的奇树异草。作家初心根植于诗歌,并矢志不渝地将诗性播种至小说创作中,才思蔓延到文艺各个领域:散文,电影,摄影,音乐制作等等。作者属后起之秀,90年代崭露头角,二十年后摘得龚古尔奖桂冠正式加冕于文学殿堂。时至今日,韦氏每部小说的发表几乎都引致毁誉交加,臧否两级。作家及其作品带来的争议发人深思。韦氏本为理工科出身,其文脉,曙光